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GALCUTION OF TKF: TWULESIT BOUNDARY LAYER AND OF TRANSITION 
ON A PLANE PLATE 

R. H i r s  ch 

ABSTRACT. 
t rans i t ion  on a plane p l a t e  are derived in de ta i l ,  including 
the  following: study of a solution of two NavierStokes equa- 
t ions  inducing a stationary f i e l d  analogous to the  average 
turbulent f i e l d ;  existence of an asymptotic solution and de- 
termination of the developnent of f r i c t i o n ;  study of the ef- 
f e c t  of an exter ior  harmonic perturbation of wavelength A .  

&For a c r i t i c a l  Reynolds number of 0.003’7, the Blasius s t a t e  
i s  unable to exist and must be replaced by the newly de- 
veloped s ta te .  The perturbations permitting such substitu- 

calculations a r e  extrapolated to  the compressible s t a t e  with 
heat exchange. 
periments show agreement w i t h  the Blasius theory of  the  laminar 
regime. 
replacing the  r i g i d  w a l l  with an e l a s t i c  membrane whose tension 
would be made dependent on the pulsation of the  exter ior  per- 
turbation which ordinar i ly  causes passage t o  the  turbulent 
s ta te .  

Calculations of the  turbulent boundary layer  and 

# t ion  and formed over the segment of Q W, a re  derived, and the 

Comparisons of the r e su l t s  with p rac t i ca l  ex- 

A poss ib i l i ty  exists t o  maintain the  laminar s t a t e  by 

INTRODUCTION 

The c lass ica l  theories of the turbulent boundary layer  a t t r i bu te  t o  the  
constituent par t ic les  the  property of passing from one l eve l  t o  the other and, 
by the process of coll ision, t o  lose  or gain momentum, t o  the  p ro f i t  or det r i -  
ment of neighboring par t ic les .  

Th i s  leads t o  the  concept of mixing lengths of the  order of a millimeter. 
The process reduces t o  put t ing i n  force, a t  the  macroscopic scale, t he  data 
which a t  the  i n f i n i t e l y  small scale  of the kinet ic  theory of gases explain the  
existence of viscosi ty  s t resses .  However, i n  the k ine t ic  theory of gases it i s  
a question of individualized molecules mutually isolated without interposi t ion 
of a continuous medium since the lengths of t he  mean f r ee  paths a re  so small 
that ,  a t  the  macroscopic scale, the t o t a l  aggregate can be regarded as being 
continuous, a t  l e a s t  i n  t he  s t a t i s t i c a l  sense. 

One could ask here why the same basic phenomenon i s  encountered a t  two such 
widely d i f fe r ing  scales, and it i s  not easy t o  conceive haw the sensible r e a l i t y  

~~ 

Jt Numbers i n  the margin indicate  pagination i n  the foreign text .  
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of a i r  a t  atmospheric pressure could, a t  t h e  scale  of a millimeter, be compati- 
b l e  with the  concept of a discontinuous medium which presupposes the mixing of 
pa r t i c l e s  from layer  t o  layer.  

Nevertheless, i s  it rea l ly  impossible, within the  framework of general equa- 
t ions of continuous media whose ra t iona l  base i s  f a i r l y  solid,  t o  cause the ap- 
pearance of the essent ia l  properties of f l u i d  motion i n  turbulent boundary 
layers?  This i s  f i n a l l y  the  question t h a t  we a r e  attempting t o  answer, although 
by frequently cumbersome means. 

For t h i s  reason, it i s  necessary t o  give a proper elucidation of a l l  con- 
sidered points. 

For example, why would the  two approaches t o  the  problem of boundary layers, 
where one i s  constituted by the  Blasius theory (with i t s  hypotheses of invari- 
ance of pressure) and the other by the method proposed here, be the  object t o  
two types of f l aw  e x i s t i n g i n  nature effect ively and successively? 

ju s t i fy  the  preferent ia l  establishment of laminar f l o w  (at Reynolds numbers be- 
l o w  1000, the  laminar f r i c t i o n  i s  actual ly  greater  than the  turbulent f r ic t ion) .  
However, t h i s  merely represents an overal l  explanation which does not furnish 
complete information. 

No doubt, we can invoke here the notion of m a d "  energy diss ipat ion t o  

Why does an abrupt condensation of ro ta t ion  take place i n  a very th in  sub- 
layer, as soon a s  the turbulent s t a t e  i s  established? 
t h i s  phenomenon and experiments substantiate it; however, no meaningful explana- 
t i o n  ex is t s  a t  present. 

The equations confirm 

S t i l l  other questions remain i n  suspense. 

No matter haw t h i s  might be, it w i l l  be demonstrated below tha t  it i s  
possible, i n  a continuous medium, t o  demonstrate theore t ica l ly  a s t a t e  differ ing 
f romthe  Blasius s ta te ,  such that  the  veloci ty  f ie ld ,  the  evolution of boundary 
layer thickness, the  evolution of f r ic t ion ,  and the s t a t e  of turbulence wi l l  be 
more or l e s s  i n  agreement with the  data obtained from prac t ica l  experiments on 
the  turbulent boundary layer  of a plane plate .  It i s  a l so  possible t o  investi-  
gate the  connectivity zone with the  Blasius s ta te ,  %.e., the  zone of t ransi t ion,  
and thus t o  obtain determinations which sa t i s f ac to r i ly  agree with the  experi- 
mental resul ts .  Finally, a study of the  compressible case with heat exchange 
can be undertaken. 

/2 

T h i s  consti tutes the general j u s t i f i ca t ion  of our essay. 

We wish t o  express thanks t o  a l l  those who aided our work with advice and 
comprehension, Prof. Eichelbrenner, Prof, Oudart, and Chief Ehgineer Vernotte. 
The paper i s  dedicated t o  the  memory of my teacher Prof. Albert Toussaint. 
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3 



CHAPTEE I LI 
FUNDAMENTAL FORMULAS AND STUDY OF THE ACTUAL BOUNDARY LAYER 

1. Fundamental F o m n u ~  

Let  there  be an incompressible two-dimensional flow in contact with the 
rec t i l inear  wal l  of a plane plate;  l e t  Uo be the  value of the poten t ia l  velocity 
on an abscissa segment x. The axes a re  fixed with respect t o  the  w a l l ,  with the  

or ig in  of x represented by the lead- 
ing edge of the  plate.  Y and y 

Let us take as basic diagram of 
f irst  approximation of the velocity U, 
s t a r t i ng  from the  w a l l ,  a scheme show- 
ing the  following (Fig.1): 

1) a boundary sublayer E ,  a t  
whose top the  velocity i s  
U1+; E i s  extremely mall 
so t h a t  U1 i s  more o r  l e s s  
p a r a l l e l  t o  the  w a l l ;  

2) a boundary layer  5 known 
as "actual boundary layer" 
in which the  veloci ty  in- 
creases from U1 t o  a value 
extremely close t o  UO. 

+ 

. Fig. 1 

It i s  s t ipulated that Uo i s  constant and p a r a l l e l  t o  the  w a l l .  A t  some 
l eve l  Y (where y = Y - E ) ,  comprised between E and ( 5  + E), we w i l l  a s m e  t h a t  
the tangent ia l  velocity U pr incipal ly  follows a l inear  dis t r ibut ion i n  y be- 
tween U1 and Uo, such tha t  

/6 

The normal veloci ty  w i l l  be denoted by V(y). 

For the time being, we w i l l  use 5 f o r  a selected a rb i t ra ry  thickness, with 
the dis t r ibut ion U(y) l i nea r  in y, so as to  represent the  mean f i e l d  of a turbu- 
l en t  boundary layer  i n  the best  possible manner. 

a r e  very small re la t ive  to  the p a r t i a l  derivative of U with respec% t o  y; it w i l l  

- 
It wil l  be assumed that  t he  derivatives with respect to x, Uf' , U l  = -UiX 

% Between the  w a l l  and the  border l i n e  of the  sublayer, it i s  necessary, so as 
t o  have zero velocity U a t  the  w a l l ,  t o  assume t h e  presence of pa r t i c l e s  in m- 

t a t ion  rolling along the  w a l l  a t  t he  mean driving veloci ty  - . 
4 
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also be assumed that s i ,  e: are of the  same order of magnitude as V i x .  

section x of the  ac tua l  boundary layer  5 ,  comprising a determination of the l a w s  
u(y), v(y) of t he  complementary ve loc i t ies  assumed as small re la t ive  t o  U(y), 
which permits sat isfying t h e  NavierStokes equations a t  the  condition of con- 
t inu i ty  and a t  the  boundary conditions to  be respected. 

In this problem, e,  5 ,  U1 (and thus 7) will  be considered as given. 

Our investigation primarily i s  concerned with the p m b l m  i n  y, in some 

T h i s  y ie lds  a velocity d is t r ibu t ion  of the  boundary layer, which - f o r  cor+ 
venience - w i l l  be denoted by the  term "stationary turbulent" boundary layer. 
The ju s t i f i ca t ion  of this designation wil l  appear only in a nonstationary study. 

The next problem t o  be attacked w i l l  be an investigation of t he  evolution 
of <, U1, e,  5 as a function of x and a study of t h e  connectivity conditions 
w i t h  the  laminar boundary layer  which (with respect t o  x) precedes the  "turbu- 
lent  layer. 

2. General Equations 

Our computational hypotheses, referring t o  the  orders of magnitude, w i l l  be 
the following: 

- Y  
5 

- - 
Uo, U (thus, U1 = Uo - U),  pr incipal  5 as wel l  a s  U -; 

u and - of the first order of  smallness; 

v and a l l  derivatives with respect t o  x, of t h e  second order. 

au 
a Y  

The continuity condition, applied to  the velocity components U and V of the  

basic diagram (U = U + f-), leads to  

whence" 

'' It should be noted here that the  streamline passing 
lowing slope, even if U:, = 0 :  

III 

through y = 5 has the fol-  

T 
2% 5 ;  2UO 

- 
If U: 0, we have - U 5': as remainder and thus cy: 15 - - T h i s  shows 

tha t ,  i n  general, the  noma1 veloci ty  a t  the boundary 5 i s  not zero and that the  
stream traverses  this boundary. 

5 



v = -[(y);. $ +U'r,y]+const. 
Since, f o r  y = 0, V 0, a plane p l a t e  is  involved, the  constant w i l l  be 

zero. Then, t he  following expressions are obtained: 

F i n a m ,  t h e  rotat ions are wr i t ten  in t he  form 

For the first members of t he  Navier-Stokes equations, we thus obtain 

For the second manbers, it follows t h a t  

where v is the k i n m a t i c  viscosity,  p the  pressure, and p the  specif ic  mass. 

The term V - contains products of derivatives with respect t o  x; this /s 
a Y  

term i s  negligible i n  view of our convention regarding the orders of magnitude. 

Such a d is t r ibu t ion  schane of the  ve loc i t ies  U ( a t  constant gradient Vi), 
if it satisfies the  continuity condition, obviously does not s a t i s fy  the  N a v i e r  
Stokes equations. 

To the preceding ve loc i t ies  U, V it i s  necessary to  add unknown perturba- 

6 



t i o n  components u, v deriving from a stream function Jr ( i n  which case the  con- 
t i n u i t y  condition w i l l  be sa t i s f i ed )  by means of which t h e  Navier equations 
r e l a t ive  t o  the  t o t a l  ve loc i t ies  U t o t  = U + u, V t o t  = V + v w i l l  be sat isf ied.  

u (  It i s  possible t o  give a solution only in t he  case i n  which - u \and$-) 
can be assumed as small (and very small), a case where a l inear iza t ion  method 
similar t o  t he  Schlichting perturbation method w i l l  be applicable'. 

We w i l l  know on ly  afterwards whether t he  admitted simplification had been 
justified+'. 

2.1 Complementarx Stream Function 

Let us now consider a stream function $(x, y) such t h a t  $; = u, -4: = v 
and l e t  us derive t h e  Navier equations with the t o t a l  veloci ty  components: 

U 
Utor = T y + u, + vu, Vtot = - [$ (;); + U'b ' +4. 

, they are, i n  complete form, 3 Vtot 
S i n c e  - - 

The pressure p can be eliminated by deriving the  first of these expressions 
with respect t o  y and the  second with respect t o  x and then subtracting term 
by term. Th i s  process i s  tha t  used by Schlichting which, c lass ical ly ,  leads t o  
what we commonly c a l l  t he  fundamental re la t ion  of formation of rotations: 

,& 

U 
-ii In fac t ,  it w i l l  be found tha t ,  a t  t he  "um, - assumes a value of 0.17 

which i s  not completely sat isfying but which also does not contradict t h e  ini- 
t i a l  hypothesis. 

U 
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Here, we obtain 

which can be simplified (terms between 

According t o  our convention, t h e  terms - y + UI a r e  pr inc ipa l  terms. 

Those i n  $ a r e  small and of the  first order. 
second order inclusive, by assuming 4 ;  t o  be of t h e  first order and a l l  deriva- 
t i v e s  with respect t o  x of t h e  second order. 

5. 
W e  Will r e t a i n  a l l  terms up t o  t h e  

This W i l l  e l b i n a t e  the  products 
I 

i n  $:, 4 i i l 1 ~  and 'I'yn-lx ( n )  ($-)x, U;, (f-)', etc .  which are a t  l e a s t  of t h e  
X 

t h i r d  order. 

This first y ie lds  
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On suppressing the products of derivatives i n  x formed with themselves /10 
and with the  quantity 5 ,  we obtain 

which i s  the  equation of def in i t ion  of the  function 4 .  

3. ELnor&le of Viscosity i n  the  Actual Boundary kye r ;  Reduced Form of the  
Fundamental Equation 

V 
The kinematic viscosi ty  V i s  such tha t  . i s  always very smalls' 

U t o t  5 

(with U t o t  being the first bracket [(+) Y + u1 + ti]). 
It i s  log ica l  t o  assign t o  t h i s  v i s c o s i t y t h e  same inf ini tes imal  order as 

t h a t  o f t h e  derivatives with respect t o  x, namelythe second order. 
1 On the  right-hand side, t he  term - V $": i s  the  pr incipal  term and U t o t  Y 

a l so  comes out as being of t h e  th i rd  order, so t h a t  it can be neglected fo r  
I 

) , on the  left-hand side, a l l  of which a re  of the  
X 

second order. 

Thus, a t  low viscosity,  i.e. f o r  re la t ive ly  high Reynolds numbers (which 
w i l l  be the  case i n  the  usual problems), the form of t h e  fundamental equation 
derived from the  Navier equations i s  such tha t ,  a t  x 
ment x), the  solution expressed i n  y w i l l  not depend a t  a l l  - or a t  most very 
l i t t l e  - on the viscosity.  

const (i.e., i n  each seg- 

T h i s  observation i s  val id  only i n  the  actual  boundary layer  where U t o t  i s  
of t he  same order of magnitude as U o ( U 1  < U t o t  < Uo>.  

This statement i s  no longer val id  i n  the  sublayer where, close t o  t h e  w a l l ,  
This i s  the  reason f o r  t he  f ac t  t h a t  neglecting of the  terms i n  V, a t  U t o t  + 0. 

the  present state of the  problem, w i l l  not eliminate the  influence of t he  vis-  

% With respect t o  U1 2 0.45 UO which f ixes  the  order of maggitude 20 be retained 
t o  the  first order f o r  t rans i t ion  Reynolds numbers 3, of 10 t o  10 , the  term 

V 
i s  below 2 X t o  0.6 X m3. 

U t o t  5 
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- - - - . -  . .. -. ... 

cos i ty  i n  the  overall problem. 

Thus, i n  the  ac tua l  boundary layer,  the  equation defining $ i s  reduced t o  

muat ion of Definit3on of t h e  Complementary & 
Stream Function 

The term $(x. s> can a l so  be resolved i n t o  a sum of products of functions - -  ~ - -  
cpn of x and y and f n  of x alone, i.e., we can 

+ = r , + n  
n 

with JIn = 'p,(x, y) f,(x>, where JI, i s  small 
number n of functions i s  assumed as f i n i t e .  

Put 

and of the  first order while t he  

Let us consider t he  quant i t ies  f, as being smll (and fix as very small), 

Since we have t o  r e t a in  only terms up t o  t h e  second o d e r  i n  the  
with the  V n  being of t h e  pr incipal  order, cp& being pr incipal  and cp,' 
very small". 
equation i n  JI, we w i l l  have 

being 

The fundamental equation i s  wri t ten as 

T h i s  equation, which i s  of the  second order i n  cp(y), has the  following 
general solution, with c, CY, B, Y, cp1, 'p2 being constants with respect t o  y: 

% It will be shown l a t e r  t h a t  cpn cannot be considered as absolutely independent 
f n . This yields  of x since i t  must satisfy (A) = c n where c, = 'IT - 3 

'p .n 5 

which i s  de f in i t e ly  of the  inf ini tes imal  second order, l i k e  5 : .  

10 



A t  each point x, t he  solution i s  such tha t  (with a, 8, Y being functions 
of x) 

3.2 Solution - .  - Complementary Velocity Components /12 
To sa t i s fy  t h i s  re la t ion,  it i s  necessary t h a t  the  terms containing y i n  

the various i r reducible  forms w i l l  be separately zero, i.e.'+ 9 

1) Terms i n  (plezcy + cp2e-"' 

p z 3  - c2 y= = 0 S whence f ]A +]a W +]a 

(where f l ,  f 2 ,  fo  a r e  constants). 

This  solution i n  f i s  val id  only i f  c: = 0. We will. demonstrate that ,  i n  
real i ty ,  c: i s  small but not absolutely zero. 

The above fo rmwi l l  be a solution only in a re la t ive ly  narrow domain A, 
such t h a t  A, = c:A w i l l  be small with respect t o  c(x>. 

This leads t a i n t e g r a t i n g  the  function f with respect t o  x, term by term, 
and thus t o  r e t a in  fl, f a ,  f3 a t  t h e i r  i n t e r io r  as constants t h a t  vary slowly 
from step t o  step. 

2) Terms independent of y: 

The solution has the form 

3* To each value n, values cn,  v l n ,  v 2 n 9  fin, etc.  a r e  associated. 
necessary, we will omit t he  subscript n. 

Except where 



3)  Terms in y: 

4) Terms in y2: 

The solution has the form 

Similarly, 

- //I - 
In front of and (+) let us introduce coefficeents A, invariant & 

Y 3  

with respect to x such as 
ceding relations containing the sign? by 2n relations where this sign is no 
longer present. These are 

h ,  = 1, so as to permit substituting the two pre- 

W 

Mtiplying the first by -c2Y, the second by ac2 + 2Y, and adding, we ob- 
tain 

whence 



With 

it follows tha t  

These relat ions can a l so  be wri t ten i n  the form 

h @ f : : = - -  cl UM*Z. 

- 1  - /// 

They show tha t  f: Y and f: cv a r e  small l i k e  (+) and (+) . 
X .3 

Fromthe first equations, a t  t he  in t e r io r  of a s tep  of an integrat ion by 
par t s  (with Y and c being constants), we derive 

which can be wri t ten as 

Similarly, 

(Since the  in t eg ra l  re la t ion  i s  sa t i s f ied  a t  the  or igin of t he  step, there 
i s  no need t o  introduce a complementary constant of integration.) 

The expressions t o  be used with respect t o  the  complementary veloci ty  com- 
ponents thus will be, i n  each segment x, 



4. Study of the  Boundary Conditions 

For the  problem i n  y, these conditions must be expressed a t  the  borders of 
the  ac tua l  boundary layer,  with the segment x considered as being arbi t rary.  

It i s  first necessary tha t  u = 0, fo r  y = 0 (lower border with the  sub- 
layer).  From th i s ,  it follows t h a t .  

and 

The term u(S> must be zero i f  one takes i n t o  consideration t h a t  the  thick- 
ness of the ac tua l  boundary layer  i s  w e l l  defined by 5 .  
ing i n  t h i s  respect and therefore must assume t h a t  u(5 )  i s  very small but not 
necessarily zero. 

( + ) / I ,  and v:x3 which a r e  assumed as very smlll, then a l so  f s i n  c5 i s  very 

small. 

A pr ior i ,  we know noth- 

Since B f ,  Y f  a r e  very small [since they are proportional t o  - 

x 
It would have t o  be even absolutely zero i f ,  i n  the fundamental equation - /// - 

i n  $, the  terms i n  UTx3(+) and ($-)' were neglected. In t h a t  case, Y as 
x 3  X 

wel l  a s  i3 would be negligible and, t o  obtain u(S> = 0, it would be necessary 

t h a t  s i n  c,S = 0, i.e., cn = -* nn 
5 

Let us thus pose t h i s  condition and l e t  us re turn t o  the  expression con- /15 

4.1 Residual Component u a t  t he  Upper Boundary 

For y = 5 ,  the  residual component of u, namely Au(S), will  be 



such tha t  u 0 for y = 5 + 65 where 65 will  be given by3$ 

A second boundary condition i s  the  continuous connectivity between the  
f i e l d  U i n t e r io r  t o  the  boundary layer  and the exter ior  f i e l d  4, a t  the  l eve l  
y = 5 + 65 where u vanishes. Here, we obtain 

since cos cn(s  + 6 5 )  = cos nn 
th i s ,  we obtain t h e  condition 

COS C n 6 5  - sin nn s i n  C n 6 5  = (-l)ne From 

This can be resolved i n t o  other n such a s  

From t h i s ,  it follows t h a t  

It remains t o  see what happens t o  V t o t  (0) and t o  V t o t  ( 5 ) .  

'73 If 

s - n2n2 
s 2  - which consequently will be very 6 5  - kL2 

?i We can thus find - = - 

small like (#) 
finite quantity. 

/I 5 - 
but, within t h e  scope of the  approx5mations made, will be a 

X 2  

1 5  
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(referring to the expressions for Bfi, Yf,' and afi  given above). 

In y = 0, i.e., at the interface with the sublayer e, we principally will 
have 

It is definitely necessary that these quantities are very small (but noth- 
ing stipulates that they be zero). 

It results from this that f:, = 0, i.e., that in ,., the integration by parts 
with respect to x = Ax, it is necessary to put flu = fZn. 
this that f,(x) W i l l  develop very slowly with x (since the linear term in Ax 
vanishes in the main). 

It also follows from 

5. Form of the Solutions Relative to y 

It is convenient to write 

1 - 2 ?on f n  (z) = C, o n  (x )  and On Kn 0 1 0  

&king use of the expression found previously for 2w,fu, we obtain 

L 

16 



and 

nn - 
s 

Finally, 

since cn = -, U = Uo - Ui. 

taking? Gn = 1 into consideration. 

Then, is written as 

In addition, we W i l l  put 5 n3K, = B, which are quantities to be used later 
in the text. These W i l l  be the constants of the problem;e, yielding 

5.1 Useful For= of the Velocity Components 

We wish to express that the "turbulent" state follows the laminar state to 
which it is connected in a continuous manner; let xj be the connectivity segment. 

Let the field U be the laminar Blasius field; it is necessary to write that 
this simultaneously represents the initial "turbulent" field. 
ficients 'P,(xJ) = of the Fourier expansion included in U t o t  w i l l  result from 
this condition, since the Blasius field is known. Nevertheless, it is necessary 
to define the limit 6j forming the interface with the sublayer. 
the definition of this sublayer, the gradient U'y stops being constant for the 
coordinate Y. 
Sect.Z.6), this corresponds to the following: 

The n coef- 

According to 

In the Blasius field, as indicated in Diagram I in Fig.16 (see 

Ulj G 0.66 U,, 8 E' 0.365, 

such that 

" Since the number of terms n is finite, 
demonstrate that four terms are sufficient) 

n%, Will have some meaning (we will 



s! N 0.635 = s, 
81 - 

N 

where 6, i s  the thickness of the  laminar boundary layer  (taking 63 = 5.5 q) . 
Applying the preceding formulas, it i s  thus easy t o  calculate the  quanti- /18 
1 
UO 

t i e s  - @n and Kn 0 

It w i l l  be found tha t  these coeff ic ients  Kn a r e  very small with respect t o  
T h i s  indicates  t ha t  the  quanti- 1, while Q n  a r e  very small with respect t o  $1. 

t i e s  En w i l l  be very small with respect t o  E1 which i t s e l f  i s  very close t o  
unity. 

from Q n ( X j )  by 
For x > XJ, the  above-established re la t ions  show tha t  Q n  (x) can be derived 

where the quant i t ies  K n  remain constant. 
of t he  f i e lds  U and V will be known as soon as the l a w  U l ( x )  i s  known [and €(x)]. 

Thus, r e l a t ive  t o  y, the  configuration 

Consequently, the forms t o  be retained a r e  as followss 

f n ,  = cn (/I,, e%" - iz,, e i c q ,  Pn i n  - u n l m z ~  $ 9  

It II  

* The t e r m  i n  Yn are  connected wi th  the concomitant presence, i n  the  funda- 
/)I - 

U 
mental equation i n  !' (see Sect.3.2), of t he  term i n  (T)xs 

boundary conditions y = 5 ,  of the  very small terms i n  AU(5) 

a r e  negligible i n  the problem in y, but cannot be neglected 

18 

and, under the  

and - . These 

i n  the  problem i n  X. a Y  



or  

[See Sect.kO.6, D i a g r a m  V i n  Fig.32, f o r  the form of the  f i e l d s  U(Y) calculated 
i n  t h i s  manner. 1 

It should be mentioned here tha t  it has been ra t iona l ly  possible t o  de- 
v i se  a form of the  s ta t ionary f i e ld  V(y), in the  d i rec t  Vicinity of a plane 
w a l l ,  qui te  analogous t o  t h a t  expe rhen ta l ly  found f o r  t he  turbulent boundary 
layer  (a t  moderate veloci t ies) .  This resu l t  w a s  obtained without having t o  in- 
voke the viscosi ty  effects ;  it w a s  suff ic ient  t o  wri te  t he  continuity condition 
and cer ta in  boundary conditions referr ing t o  the  connectivity a t  the upper 
border (potent ia l  f l o w  Uo) and lower border (sublayer E where the viscous ef- 
f ec t s  a r e  localized) 

6. Ekpressions o f  Rotation and Fundamental Relation a t  t he  Base 
o f t h e  Act& Boundary Layer 

Let us next calculate 

Thus, 

datot - - Later i n  the tex t ,  we w i l l  have t o  write the  fundamental re la t ion  
d t  

= v A2nt0t with the  rotat ions a t  the base y = 0 of the  actual  boundary layer: 

where 
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or 

Since the continuity condition is satisfied 

a Vtot - 3 Utot 
a Y  ax  

__- _-- 

32 u __ a3 V1ot - -- a 3  utot 
3 Ya 3 x 3 y ’  a y a a x -  a x a a y  

a1 Vtot --- 

we thus have 

At u = O :  

’‘ If the complementary term in 2 f i , Y n ,  representing the term of residual ve- Iff 

locity (with respect to UO) at the level y = S is neglected, then 7 (F) x 3  

w i l l  vanish. 

20 
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CU 
This approximation w i l l  be investigated later in the text. 



6.1 General Equ t ions  of t he  Problem in x, _in the  Actual  Boundary Layer 

The fundamental equation a t  the base i n  question, multiplying each s ide of 
t h e  equation by -1, Will be wri t ten as 

or 

//// - 
1 a r e  neglected a s  well  as those i n  -v - (+) a%, 

n 2  ['he terms i n  v 

and i n  -v $ -2 
7 1  C n  x 4  

C n  

It should be noted t h a t  
-3 -3 

x e ; : C g n = x L n 3 Q ,  53 n --Bo,, - E3 
I1 ' n  

TE - (- l)nc,, On = - 
n n 

( -1)n~n On = f; A Cgl, 5 
and, consequently, 

/21 

It w i l l  be found t h a t  writ ing eq.(I) reduces t o  picking up the re la t ion  of 
def in i t ion  of the stream function 6 (see Sect.3) a t  t he  base of the  actual  
boundary layer, re ta ining the  principal terms in v.  We wi l l  demonstrate below 
t h a t  actually, and within the  scope of the  adopted schematieation, a disconti- 
nui ty  of the  velocity gradient and of . the  rotat ion generally exists. 

case, the corresponding terms (even as a product with -) may remain loca l ly  

s ignif icant .  Consequently, they must be retained i n  the  analysis. 

In  t h a t  
V 

US5 

U The next s tep i s  t o  expand eq.(I) for which the  derivatives of - must be 
5 

calculated, taking i n t o  consideration t h a t  the  products of derivatives wi l l  be 
of a negligible inf ini tes imal  order: 



- - 
Finally, we have U: = -U;x since U = Uo - U1. Consequently, the condition 

(I) will be successively written i n  the form 

, whence Let us multiply by - 1 
U1 

The terms containing products of the derivatives with respect to x and of 

{ )  ) can be eliminated, finally yielding - (terms between V 

u1 

which will be the form to be used below. 
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6.2 Nyne.rica1 Determinations 

At the end of Part I?, we will give a numerical determination of the coef- 
B 
A 

ficients @,, and of the quantities B, A, - for a connectivity at the laminar 

Blasius stage in an arbitrary segment xj. 

Let us state f r o m  now on that, for U15 = 0.65 Uo, the follaJing applies: 

1 1 1 

1 1 1 

- @ 0.112, - @q 0.0132, - @si = + 0.003'. uo UO UO 

- Q, - - 0% 0, v,ORi = - 0.0008; uo 'j - uo 
B 1 1  

A = 0.900. B = 1.416, = 1.57, - 2 5ia C- n2- - 0.075. 

However, whereas the determination of A is accurate, that of B is less pre- 
I cise. Minor uncertainties relative to the coefficients - @,, f o r  n of a 
uo 

higher order, have a considerable influence on this factor (let us recall that 

is determined with a certain margin of indeterminacy. B =: n3 L)* Thus, - 
For U1 + X = 0.45 UO, a value to which we must refer here, we obtain 

B 
$1 A 

1 1 1 1 u;@~ GZ 0.176, - 0, = 0.020', - Oa = 0.006, - = -0.001, 
UO UO UO 

with 2 remaining unchanged. A 

)[- See Section 21.6 below. 
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CHAPTER I1 

BOUNDARY SUBLAYER 

/23 

7. Structure 

It i s  now necessary t o  determine the s t ruc tura l  scheme on which the  sub- 
layer  depends which, as should be recalled here, i s  the zone of very s l igh t  
thickness e comprised between the w a l l  of the  p l a t e  and the lower border o f t h e  

ac tua l  boundary layer,  where the ve- 
l o c i t y  i s  ~1 ( ~ i g . 2 )  . 

The boundary conditions, re fe r r ing  
t o  this sublayer, wi l l  thus be a s  fol-  
lows : 

on the  wall: 

Utot = 0, Vtot = 0; 

% a t  the  border 8: 

Utot = u,, Vtot = 0. 

The simplest scheme t o  which we 
can r e f e r  here i s  that of a l inear  dis- 
t r ibu t ion  ( i n  y) of Utot , from zero a t  
the w a l l  t o  U1 at the border l ine.  (A 
theore t ica l  j u s t i f i ca t ion  of t h i s  l a w  
will be given i n  Appendix IV.) 

Wall X 

Fig. 2 

O f  course, t h i s  w i l l  be only a ten ta t ive  scheme, i.e., a procedure fo r  in- 
troducing a f i c t i t i o u s  sublayer equivalent t o  the r e a l  sublayer i n t o  the problem, 
provided tha t  one can prove tha t  t h i s  i s  not physically absurd, and expl ic i t ly  & 
writing tha t  - a t  l e a s t  on the  average - the  fundamental re la t ions a r e  sat isf ied.  

Since, fo r  Y comprised between zero and e", 

const. B UIOt u, 
2 Y  - E 
--- Y 

Ut01 = y u,. Vtot = 0, 

* The continuity condition, a s  before, yields  

U1 
which remains very low for the  double reason of 8 being small and (7)' being 
SIIlall. X 



Q 

will 

1 U1 
The rotat ion i s  wi = - - - which i s  a l so  constant ( re la t ive  t o  Y). 2 € 

and of on traversing the  boundary U1 
a y  

Thus, a discontinuity of 

generally exis t ,  except when e i s  such tha t  

This wi l l  be the  par t icular  case of the segment xj of connectivity between 
laminar and turbulent flow, i.e., t he  case of the las t  segment where the f l o w  
ceases being of t h e  Blasius type and i s  replaced by t h e  "turbulent" type de- 
fined by the equations investigated i n  the previous Chapter" 

Fromthis,  we derive the i n i t i a l  values of u1 = UlJ, of 8 = " J ,  and of 5 = 
= S J  as soon a s  - since XJ i s  assumed as given - t he  value 6, and the  f i e l d  
Utot J (XJ , Y) a r e  known from the Blasius theory. 

In t he  general case, the presence of a rotat ion discontinuity wi a t  the  
boundary U1 indicates  the  presence of par t ic les  ro l l i ng  along the wall  and 
undergoing intense rotat ions i n  i t s  d i rec t  vicini ty .  

8 .  Discussion ._ of the  Validity of t he  Rotation Scheme 

The first question raised i n  t h i s  respect i s  whether t h i s  rotat ion discon- 
t i n u i t y  along a boundary U1 represents a reasonable physical image. 

Let us assume a l i n e  of par t ic les  i n  rotation, moving a t  uniform velocity 
along a wall, with t h e i r  viscous diss ipat ion a t  each ins tan t  being compensated 
by the  creation of new rotat ions f o r  maintaining - a t  each point and a t  each in- 

s t an t  - the  derivative ') constant. ax 
Thus, a t  a point I (x = 0, y) fixed with respect t o  the  w a l l  and a t  a short 

distance from t h i s  wal l , ,  we w i l l  attempt t o  define the  value of t he  rotation, 
diffused (by diss ipat ion)  by t h e  se r i e s  of vo r t i ca l  elements i n  contact with 
the  w a l l .  

8.1 Rotation . _ _  - - - - Diffused a t  a Fixed Point i n  Space, by a Moving Vortex /25 
Let us first consider a pa r t i c l e  t h a t  entered i n t o  ro ta t ion  i n  xg a t  t h e  

it. In  t h i s  par t icular  case, the veloci ty  f i e l d  Uwhich i s  a Blasius f i e l d  satis- 
f ies ,  by elimination of t he  pressure between the  Navier equations, the above- 
investigated equations; thus, t he  Blasius f i e l d  i s  a par t icular  case of a more 
general, although still  appro-te, solution of t h e  Navier equations subject t o  
approximations already less l imi ta t ive  than those of Blasius. 

25 
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i n  I(0, y): 
I 

rz 
A, 

wy (x, t> = - 1 - fo 
where 

where the subscript 0 of W indicates t ha t  rotat ions of t he  par t ic les  of t h e  l i n e  
i t s e l f  a r e  involved, i.e., rotat ions such as r = 0. 

rz = (- x)' + gz. 

It should be recalled here tha t  A0 i s  linked t o  t h e  circulat ion YO by t h e  
following statement, resul t ing from the  def in i t ion  of t h e  l a t t e r :  

A s  r + o r  t -, t o ,  it a l so  follows t h a t  ~ ( t )  -, 8 n v  A. such tha t  y o  = 8 n v A o .  

A s  soon as WO (t), s t a r t i ng  from x, executes the  s tep 6x such a s  6x = U 6 t ,  
t h i s  intensi ty ,  by dissipation, undergoes the  following var ia t ion of rotation: 

- A o U  6 wo (x) = .~ (x - xo)2 x* 

So a s  t o  have t h e  ro ta t ion  W o  r e t a in  i t s  i n i t i a l  value, it i s  necessary 126 
t ha t  a compensatory ro ta t ion  of t he  l o s s  6Wo i s  generated on the  same pa r t i c l e  
during i ts  t r a n s i t  6x, namely 

S A , .  u 
6 2 0 0 ( x )  =-- 6s ' 

such t h a t  

26 



whence 

Here, 6Ao Appears as i n f i n i t e l y  small (of t he  second order i n  6 x )  with respect 
t o  Ao6x of %he f i r s t  order. 

diffusion of u)\ during i t s  t r ans i t  6x, wi l l  then have been 
In I(0, y), located outside the  l ine ,  t he  var ia t ion i n  rotat ion induced by 

u * x 2 + x 2  

4 v  6y 
-- - 

X 2  can be neglected ( + '" being i n f i n i t e l y  since the term i n  e 
6X 

large) 

the instant  of i t s  reaching x, wi l l  have the  following expression: 
The rotat ion induced i n  I by the element WO, from i t s  origin i n  xg u n t i l  

8.2 Rotatio-ns Diffused byv_-a- Vortex Line i n  Dissipation 

Let us now combine a permanent l i n e  of elements similar t o  those considered 
above and a l l  originating i n  q, with the  density of rotat ion being uniform so 
tha t  a l so  the  density of t h e  quant i t ies  A 0  generating these elements a t  the  
origin x g  w i l l  be uniform (for t h i s ,  we w i l l  denote it by A; ): 

X V  

'A0 = u  AI^,^ = cons t . 3 1  

The in tens i ty  of ro ta t ion  induced i n  I i s  expressed as follows: 127 
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xi 

Y 
when putting XI = -. 

It i s  necessary t o  assume w.0 and N. t o  be very large, i.e., no -, -a Y 

n -, + 

= +Iwol and cause Ixol t o  tend t o  inf in i ty .  
a variable complex;;: 

since y i s  assumed as very small, such tha t  we can put N O  = -In0 I , K = 
Let us a l so  put w. = %J? z which i s  

The in tegra l  i n  z i s  

It is  obvious t ha t  - 1 ~ 0 1  i s  the  only (essent ia l )  singular point of the  
function under the in tegra l  sign. 

Thus, t h i s  function i s  regular along the  contour formed by AA' and the 
half-circle erected on AA' , except a t  
A which i s  surrounded by a small 
quarter- c i r c l e  of radius 6 r  (Fig.4). B 

Let us form 

-?I/ 1 f Z 2  

4v Z+ixol z 
A' z+pto-j e 

- -  

0 A s  I z I -, OD l i k e  1x0 I , the  half-circle 
- I4 + IX4 ABA' increases indefinitely,  and t h i s  

quantity tends t o  zero since the  ex- 

A 2  

Fig.4 

ponent tends t o  zero l i k e  e -& y? 

Thus, except fo r  t he  small quarter c i r c l e  i n  A of radius 6 r ,  the  in tegra l  - which i s  zero over the  en t i r e  contour and zero over the half-circle  - i s  zero 
on A ~ A ~ A ' .  

Let us fur ther  invest igate  the small-quarter c i r c l e  i n  A. We can wri te  
the in tegra l  as follows: 

% I n  what follows, 3 i s  used f o r  Re (Reynolds number), as i n  original.  
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and put a = -1x01 + 5 from which it follows that dz = d5; f ina l ly ,  

z + 1 + I =  t = 6 r .  e79. 

This w i l l  yield 

A s  1x01 + my it i s  always possible t o  se lec t  1x0 1. suf f ic ien t ly  la rge  so 
that ,  no matter what 6 r  might be, t he  modulus of 

will be smaller than an a rb i t r a ry  value E .  Then, 

Since 

l-f 
P J < € Z -  tends t o  zero a s  E tends t o  zero. 

c i r c l e  thus w i l l  a l s o  be zero as soon a s  1x01 + m. 

The in t eg ra l  on t h e  quarter 
C 2 

8.3 Agpl ica t ion to  the- Sublager Case 

Consequently, provided tha t  i s  suff ic ient ly  small, t he  ro ta t ion  dif-  

fused i n  y can be, neglected f o r  t he  rotat ion of constant density exis t ing i n  the  
vortex l i n e  i n  whose neighborhood the  point I i s  located. 

I xo l  

Thus, a rapid evolution of t h e  density of ro ta t ion  i s  possible i n  t h e  
neighborhood of a vortex sheet, and t h e  discontinuity of W(y) which our particu- 
lar scheme incorporates on crossing the  border l ine  U1 i s  by no means abnormal. 

However, it i s  a l so  obvious tha t ,  if t h e  layer  of Uniform ro ta t ion  density 
does not extend far upstream or far downstream of the  point I under considera- 
t ion,  t he  vo r t i ca l  diffusion will become noticeable. 

T h i s  would explain tha t ,  a t  increasing vo r t i ca l  density, i.e., whenever new 
rotat ions become superposed t o  t h e  layer  of Uniform density, everything happens 
as though t h i s  layer  would incorporate new pa r t i c l e s  which it would cause t o  ro- 
t a t e .  
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In the highly approximate concept used here, i n  which a l l  variations of 
t he  quant i t ies  with x a r e  assumed as very slow, t h i s  phenomenon can be neglected. 

/29 

9. Constancy of t he  &adient IJ: 

Another question i s  raised i n  this respect, namely t h a t  of defining whether 
t he  Navier-Stokes equations - f o r  a row of pa r t i c l e s  i n  rotat ion - a re  compatible 

with a d i s t r ibu t ion  U such as - - - const i n  the  thickness of the pa r t i c l e  l ine .  
a Y  

Let us resume the  reasoning of the preceding pages, applying them t o  a 
calculation of t he  induced velocit ies.  

A rotat ion generated a t  the  time t o  w i l l  induce, a t  t h e  time t and a t  a 
distance r from the nucleus, a tangential  induced veloci ty  

(see 

such 

Prandtl, loc .  c i t . )  where (t - t o ) U  = x - XO. 
For a path 6x = U 6 t ,  the  f o l l m i n g  induced veloci ty  var ia t ion appears: 

Simultaneously, we have 6Ao t o  compensate the loss  of diffused rotat ion 
tha t  

A0 
(x -x$ x2, 

6 A, = 

whence 

r 2 U  -- 
being zero). Here, 6 % i s  of the  second order inf ini tes imal  i n  6x. T h i s  ie 4 v 6 x  

leaves oriLy 6U. 

Due t o  the  single vortex Wo, it follows t h a t  



The t o t a l i t y  of rotat ions WO, a l l  originating i n  xo a t  Uniform density, 

w i l l  generate, with r = Jm, 

According t o  the  coordinates x and y, the veloci ty  components u and v a r e  & 
obtained by projection of U (F'ig.5). 

A t  x = 0 and since u = U , v = U *  xi , we w i l l  have Y 

m' d F - 7  

xi 
Y 

Let us put wi = - so tha t  an integrat ion in t e rva l  i s  defined such that 

x = -XO and - a r e  very small, i.e., t h a t  !XO[ i s  la rge  ( f o r  example, f 100). 
x, 

Graphical integrat ion w i l l  then be easy, yielding 
U 

1 

X i  0 

Fig. 5 

The accompanying tab le  and diagram show, a t  d i f fe ren t  values of - U*Y = X, .. 

1 auto, quantity, t o  within a constant factor  -,-, measures the gradient 
AOXO a Y  

(The superposition of several  l i n e s  of elements i n  ro ta t ion  with - a b  - = 0, 
a Y  



can only thicken the  domain with constant gradient 

It should be noted here tha t  (Utot), '  ( U t o t ) i  = const represents t h e  
fac t  that the  material elements located on t h e  radlus vector from 0 t o  y are 
subject t o  the  same rotat ion and belong t o  a so l id  e n t i t y  i n  ro l l i ng  motion; 
t h i s  defines the dimension of what,one might c a l l  t h e  "particle". 
t he  preceding result, where @tot ), 

According t o  
5, everything @tot ): = const f o r  0 < X 

V proceeds as though the  dimension of t h e  pa r t i c l e  were 5 &- = - 20. U U 
. .  

0 1 2 5 10 2 0 )  

Fig.6 

For U = 87 m/sec, we have 

r <  3.3 10-6 ;LI IC s (3.3 ;.>, i n  air. 

Although they a re  ra ther  small, 
these dimensions a re  la rge  with re- 
spect t o  the  radius of a molecular 
volume (of t he  order of lo--' MKS) and 
a r e  la rge  even with respect t o  the  
mean f r e e  path (of the '  order of ). 

10. Fundamental Relation i n  the Sublamr 

Since the scheme adopted fo r  t he  sublayer cannot be contradicted f romthe  
viewpoint of physical poss ib i l i t i es ,  since here the  sublayer i s  considered i n  
i t s  enti ty,  the drive velocity of t he  par t ic les  i s  the mean veloci ty  

dx - - u, dY dl - 2- and .--- - cll - 
no matter what x might be. Thus, - av - - 0. 

ax 

Applying the fundamental re la t ion  t o  the  rotations,  we obtain (see Sect.2.1) 

i.e., 
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which i s  the  sought re la t ion.  

It should be noted tha t  t h i s  r e l a t ion  i s  appro-te, because of t he  very 
nature of t he  scheme used here, so that i t s  r e l i a b i l i t y  is  not absolute. 
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CHAPTER I11 

THE PROBLEM RELATIVE TO THE TANGE3ITIAL COORDINATE x 

11. Third Relation for Moment of Momentm h m e s  

In  the  preceding Chapters, we demonstrated that the  problem, in each seg- 
ment x, was determined with respect t o  y as soon as Ul(x), 5 ( x ) ,  € ( x )  were 
given. 

Now it i s  necessary t o  calculate these three functions of x, which means 
tha t  we require three d i s t inc t  relations.  

Two of these a r e  already known; they a r e  the fundamental re la t ions of forma- 
t i o n  of rotat ions [eqs.(L) and (II)J, of which one [eq.(I)]  i s  wri t ten a t  the  
base of the  ac tua l  boundary layer  and the  other [eq.(II)] a t  the in t e r io r  of the  
sublayer, for  characterizing the t o t a l i t y  of i t s  component. 

Writing these equations simultaneously is  necessary t o  express that ,  de- 
s p i t e  the discont inui t ies  of the  veloci ty  gradient Ui and of the rotat ion which 
i s  included i n  our scheme, compatibility of the  two flows and compatibility of 
these flows wLth the general complete (Navier) equations w i l l  ex is t  on travers- 
ing the border l i n e  9 between the layers':'. 

Because of t h i s  fact ,  the  re la t ions  i n  question a r e  qui te  d i s t inc t  and con- 
s t i t u t e  two functional conditions. 

The th i rd  re la t ion  i s  c lass ica l ly  derived from considerations of impulse 
in space ,by  evaluating the  momentum losses  exis t ing i n  each segment x; on de- 
r iving the obtained expressions with respect t o  x, we W i l l  - by def ini t ion - ob- 
t a i n  a f i r s t  evaluation of the shearing force 'rg along the  w a l l ;  it wil l  be suf- 
f i c i en t  t o  ident i fy  t h i s  with the general expression of l oca l  shear 70 = 

= 4 ;:Ot ' , derived from a consideration of t he  configuration of the  veloci ty  

and f ie ld ,  fo r  obtaining the th i rd  sought condition. Here, [ ay ] = - 
p = pv. 

auto, Ul 
Jo 

0 E 

ll.l E x p r e s s i o n s s s ~  of Momgnt o f  Momeng & 
Using the  tangent ia l  velocity spectra determined previously, l e t  us calcu- 

l a t e  the losses  of moment of momentum 

q = qt + qc = p Utot (U, - L ' l O t )  dY 

-:i Because of the discontinuity of U: a t  the  border l ine ,  the terms in Q/l'kbecome 
loca l ly  s ignif icant  . 
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i n  each segment X. 

U1 I n  the  sublayer, we have U t o t  = - Y so tha t  
E 

In t h e  ac tua l  boundary layer,  

whence 

Tr 
Y e  Let US put 8 = - 

When y var ies  from 0 t o  5 ,  a l so  8 Will vary from 0 t o  TT, such tha t  
5 

E - 
\osin n i  y d (n: y )  = n c s i n  n 6 .  d 6 0 i f  n is even; 

n 'n 
= -zi0 [cos (n + p )  o - cos (n --p> 01 = 0; 
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Then,. t he  loss of moment of momentum qg becomes 

i.e.,  

Since (g + q!) must be derived with respect t o  x, the  following W i l l  ap- 
pear : 

Similarly, 

We will put 

w i t h  
c , 

-. 

and with 
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alone since, as. should be re- Thus, d€ and R appear as functions of - and - 
called here, the quantities Q, are written in the form 

U1 U1 

UO UO 

On = Oi * ICns 

U1 1--. 
where K, are constants while N = u, - u1 .(i.e., - 1 Q, ~ U 

Anb An UO 

be 

11.2 -.cation . .  to thLThird Relation 

The relation for derivatives of the losses of moment of momentum will thus 

Since, by definition, the coefficient of local friction CT is expressed as 

v u, 1 c;=--I-=2-.-.- P u, u, E'  

c 

2 u; 

it follows that 

c = - . - L . -  2 v  u 1 and e l r =  +q[e.$-$-.q]. 2 v  -u' u, 'U, c; 

Finally, the equation of derivatives of the losses of moment of momentum 
W i l l  be written in the form 

U1 

uo 
32. For the values of - and G n  to be considered, we find A > 0, R < 0. 
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i.e., 
2 u, e*'/, C? = 2  A<',-- ('y(l-q)T - c uo uo 

( IIIa) 

which w i l l  be the  form t o  be used below. 

12. Study of t h e  Sublayer Relation and Functional H,motheses 

To solve the  problemwithi.espect t o  t h e  variable x, it i s  now necessary 
t o  solve t h e  system of th ree  simultaneous nonlinear d i f f e r e n t i a l  equations (I), 
(11), (111) [or,  which comes t o  t h e  same, resolve the  system (Ia), (11), and 
(IIIa) by introducing the  auxi l iary function Cy over eqO (IV) 1. 

The constants of integrat ion must be fixed by taking the  i n i t i a l  conditions 
i n t o  consideration, i.e., conditions fixed by t h e  connectivity i n  xj (assumed as 
given) with t h e  laminar Blasius s ta te .  

Unfortunately, it i s  impossible t o  d i r e c t l y  solve the  system of t h e  th ree  
equations i n  question, since we do not know how t o  write t h e  equation connect- 
i ng  E with U1 (other than i n  a d i f f e r e n t i a l  form). 

T h i s  d i f f i c u l t y  makes us attempt t o  solve eq.(II) of t h e  sublayer separate- 
ly ,  while s t i l l  producing a c lass  of solutions compatible with eqs. (I) and 
(111). 

This consti tutes a detour i n  approaching OUT problem, but we will demon- 
s t r a t e  t h a t  t h i s  detour nevertheless will  yie ld  information on the  mechanism of 
the  phenomena. 

Since eq.(II) contains 6 and U1 as unknuwn functions, it i s  necessary - i f  
t h i s  function i s  considered separately - t o  conceive a scheme of formation of 
t h e  sublayer which i s  realized by the  introduction of a second r e l a t ion  between 
E and U1, su f f i c i en t ly  simple f o r  permitting a c a ~ c u l a t i o n  of eq.(II). 

Then, the  solutions E ,  U1 obtained i n  t h i s  manner must be compared with 
t h e  conditions (I) and (111), f o r  defining the  v a l i d i t y  of t h e  scheme under con- 
sideration. 

a 

12.1 Schemes f o r  Causing Rotation of t h e  Sublayer ELements 

Actually, we w i l l  examine several of such schemes: 

F i r s t  scheme. The 
it consti tutes a stream 
simple, being 

sublayer involves the  same f l u i d  par t ic les ,  meaning t h a t  
tube. Then, t he  r e l a t ion  between and LJ, i s  especially 



The local friction coefficient reads 

It will be shown below that U1 is a necessarily descending function of X. 
This scheme appears incompatible with what is known of the rapid increase in CF 
in the domain directly downstream of the segment of connectivity XJ with the 
laminar state preceding the "turbulent" state. 

- Second scheme. Let us apply the Blasius hypothesis to the sublayer, i.e., 

let us assume invariance of the pressure in the sublayer. Then, - ap  - - 0. 
ay  

Since, the normal pressure oY whose expression is 

J V  
3 Y a, = - p  + 2 p- ( p  i s  the  v i s c o s i t y  c o e f f i c i e n t )  

is invariant in the thickness of the sublayer, it follows that 

a2v - 0. i.e., - - 
- 0 fields Then, the continuity condition - + - - au 

ax a y  

a y2 

- const - relative to x, which means again that 8 = hU1. u1 i.e., - - 
E h 

Thus, the local coefficient of friction is expressed by 

2 v  1 C," = vg. I; = c o n s t .  

Here again we do not have an image permitting consideration of the phenomena 
occurring in the zone directly downstream of the connectivity segment XJ. 

Third scheme. The preceding schemes have proved, with respect to the 

39 



u:, 8: - u:, e :  - - evolutions U1 and C, the  existence of the  laws 8 - - -, 7 - 

Let us see what happens i n  the  general case - - 
avai lable  parameter 

Ul E 

where 5 i s  an e: - 5 . T  uL 
c 

From this it follows t ha t  

Log E = Log U:+c + const, 

where h i s  a constant sat isfying the initial condition. 
rotat ion gradients have the following expressions: 

Then, the  veloci ty  and 

1 u, 1 1  
2 c ---.- 2 hUj 

--. - - 
a a  < U', - =--. 
J X  2 hU:*F' 

Let us wri te  the  equilibrium of a f lu id  element between the actions of 
pressure, f r ic t ion ,  and iner t ia .  We obtain 

where 

Finally, 

., I . -  
.- ... . ..... ._ -_. .., . 



Consequently 6 appears as character is t ic  of t he  evolution of pressure & 
(and of ro ta t ions j  i n  the sublayer. W e  Will s t ipu la t e  t h a t  t h i s  quantity i s  
character is t ic  of the  mechanism of placing this sublayer i n  rotation. 

-t 0, t h i s  agrees with the  o b s e r  It should be noted tha t ,  f o r  6 -, 0, - aPm 
ax 

vations made with respect t o  the  second scheme. 

Use of the re la t ion  E = he* '  for  solving the  condition (11) re la t ive  t o  
the  sublayer takes nothing away from the generali ty of t h e  study since, as i s  
necessary t o  do, t h i s  study i s  performed i n  steps: 6 (and h) will be quant i t ies .  
derived s tep by s tep i n  such a manner as t o  satisfy the other re la t ions (11) 
and (111) a t  each s tep  and, a t  the  or igin of each of these, a l so  the  conditions 
of connectivity with the  preceding step. 
f a c i l i t a t i n g  the analysis,  i s  involved here. 

In fact ,  a simple change of variables, 

12.3 Evolution of t he  F r i c s m  CoefficieBt d t h - t h e  Mean Parameter 6 

It now i s  necessary, i n  the case i n  which the mechanism 6 of induction of 
rotat ion i n  the sublayer var ies  from s tep  Ax t o  s tep aX, t o  define the  evolu- 

i n  t h i s  layer.  t i ons  of thickness 8 of t h e  sublayer and of t he  gradient 7 

the  sublayer a t  t he  or ig in  of t h i s  step: 

Ul 

Let 65 be the  mechanism of the first step, with Ej being the thickness of  

Along the step, h j  and 6 j  a r e  constant. Hence, 

A t  the extremity of t he  step, we  thus have 

whence 

In  the second step, t h e  following appears: 



whence 

and so on. 

The expression of 8, a t  the  n-th s tep reads 

w h e r e n i  denotes the product sign. 

If the  quant i t ies  A h ,  a r e  very small, the  pr incipal  portion of the  product 
ll will be wri t ten as 

and, i n  the  form of elementary steps, 

Taking the mean value of 6 i n t o  consideration, t h i s  value i s  removed from 
under the in tegra l  sign so  t h a t  we can wri te  

Simultaneously, the veloci ty  gradient i n  the  sublayer becomes 

U, 

Since 



we have 

which shows t h a t  6 characterizes also the  evolution 0, t h e  loca l ' coef f ic ien t  of 
f r ic t ion .  

13. - Solutions ~- Ul(x) a t  Different Values of 6 - __ . . . - - . - . . - - _- . 
Let us now return t o  eq.(II) f o r  rotat ions i n  t h e  sublayer, a t  a rb i t ra ry  C: 

This equation i s  wri t ten as 

"" , it follows t h a t  Since (-)' 1 = - 
h d  x hU$+ 

By integration, we obtain 

L e t  us put 

where 8l i s  the  value of VI that cancels U:x. 

Fromthis,  we derive 

i.e., again 
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which i s  a d i f f e ren t i a l  equation of the  first order with separate variables 
whose in tegra l  solution, from the  or igin conditions U1, , XJ , reads as follaws: 

No matter whether 6 i s  an integer or  a fraction, it i s  possible t o  calcu- 
U 1  

l a t e  i n  a simple manner. (For a f rac t iona l  6, we wil l  s e t  

whence 

n 
The quantity n i s  selected such t h a t  

t h e  quantity under the  in t eg ra l  sign wil l  then become possible so t h a t  a l so  the  
integration can be carried out.) 

i s  an integer.  Decomposition of 
6 - 1  

The preceding f o r m w i l l  be used fo r  6 > 1. 

For -1 < 6 < 1, we will write  

i.e., 

Finally, for  6 = 1 a singular solution i s  obtained, while the l imit ing 

1-6 -&6) 
0 
0 

must be sought as soon as 6 + 1 (since t h i s  
1 - . C  value of (VI 

takes  the form - fo r  6 = 1)- 

Since 



making use of a Taylor expansion of U:-6 about 6 = 1, it follows t h a t  

Thus, 
U lim (Log U, - Log = - Log ,A, 1--I: >e+,=- L t  

Finally, 4 

U'k = 27 1 u; Log -- u, 
cz 

I n  a l l  these cases, it i s  immediate1 obvious tha t  t he  form of evolution 

branches. 
m f o r  U1, which i s  the only one t o  
be taken i n t o  consideration. In 
t h i s  branch, UlX i s  constantly nega- 
t i v e  while U1 evolves by decreasing 
between two asymptotes, 8 fo r  x = -m 

&,& 
of U,(x) i s  t h a t  figured out above (Fig.7 The curve consists of three 

Only one does not contain 
5 

~ and zero fo r  x = +a .  

It w i l l  be noted t h a t  the  

i n  front  presence of the factor  - 1 
a 

of x = XJ,  i n  vim of the  very l o w  
value of i t s  inverse (29 x 
2v i n  t he  usual cases), indicates  how 
minimal must be the path x - xj 
necessary f o r  having Ul pass from U1, 

(which will be of the  order of 0.65 UO) t o  values d i r ec t ly  adjacent t o  the 
asymptotic values+'. T h i s  simply s igni f ies  t h a t  t he  i n i t i a t i o n s  of rotat ion ana- 
lyzed by eq.(II) rapidly reach t h e i r  s t a t e  of equilibrium and t h a t  viscosi ty  ef- 
f ec t s  of an en t i r e ly  d i f fe ren t  order of magnitude a r e  required fo r  appreciably 
decelerating t h i s  process. 

f o r  
Fig. 7 

14. Necessity of a f i n i t e  Laver - - .  .- Limit f o r  t he  Decrease i n  U1 
._ . -  . _ _  - 

Since UI, s t a r t i ng  from U1, which i s  the  i n i t i a l  connectivity value between 
the "s ta t ionary turbulent" s t a t e  and the laminar s ta te ,  *rapidly approaches i t s  
asymptotic limit, it will be found t h a t  U:, vanishes extremely rapidly: Thus, 
eqs. (Ia) and (IIIa) assume the  following reduced forms: 

3' An explanation for  a much slower evolution will be given i n  the  second par t  
(nonstationary study) 

4.5 



If U1 would tend t o  zero as indicated by t h e  p rpxd ing  solutions, it would 
be necessary tha t  a t  l e a s t  5 increase indefini te ly ,  for  values x - XJ tha t  are 
s t i l l  extremely small++. 

This phenomenon might possibly be compatible with flows i n  the s t a t e  of 
separation but cer ta inly cannot be compatible with normal flows. 
necessary t h a t  U1 find a f i n i t e  lower limit f o r  i t s  decrease. 

Thus, it is  

However, t h i s  would mean tha t  eq.(II) cannot be reduced to the  excessively 
simplified form tha t  we have used by considering, in the  rotation, only the term 

w i  = - - -. 
dimensional s ta te .  
the contraction € (x) i s  extremely abrupt . 

1 U1 

2 € 
The functioning of the sublayer cannot be reduced t o  a one- 

The normal veloci ty  component V cannot be neglected when 

In t ha t  case, a term complementary t o  those taken i n t o  consideration i s  & 
i n  existence. Let A(U1, x) be t h i s  term such t h a t  

with 6 retaining its preceding expression 

(where h and 6 vary i n  principle from step t o  step).  

T h i s  makes it necessary t o  re turn t o  the  preceding expansions and t o  define 
the  conditions which A must sa t i s fy  so tha t  U1 will f ind a nonzero asymptotic 

* A numerical calculation shows tha t ,  i f  U1, i s  not i n f i n i t e l y  close t o  the  
1 

1000 
asymptotic limit, t h i s  limit i s  pract ical ly  reached f o r  paths x - XJ of (-) 

( 2 '  
\ 1000 

t o  I -) of a millimeter. 

ous explanation fo r  t he  abrupt increase i n  5 and Ci i n  the  zone x close t o  XJ 
except by assuming tha t  Ulj d i f f e r s  great ly  from t h e  asymptotic l i m i t ;  according 
t o  the  configuration of t he  Blasius f i e l d  and since the  boundary of the  sublayer 
i s  located where U{ ceases being constant, a value Ut, of the  order of 0.65 t o  
0.68 Uo corresponds t o  th i s .  

In fact ,  it i s  impossible t o  furnish a sirrmltane- 

4.6 
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lower limit X. 

15. Solutions ~- S(x) with Complementary - Term':' in the Sublayer Quation 

Here, we thus have 

and 

The fundamental equation of the sublayer 

on multiplying by 2, becomes 

2 U'I, [m 1 -I- A',,] = v ([w. 1 + A'V,] U'1.>(.# 

or 

so that 

So as to have a root X appear in the denominator of the term in Ui, of 
the equation written by separating the variables, it is necessary, with 

[u:-E - CV-C] + \ U, . A;,, d ~ ,  = Z v  1: 
h (1 - 1) 

or 

3:' Another possibility was also investigated, in which E would not be able to de- 
crease indefinitely (its " a 1  dimension could be of the order of the w a l l  
roughnesses). It has been proved that such a consideration does not permit the 
appearance of a lower nonzero limit for U1 and a decrease of the friction coef- 
ficient at increasing x.- XJ. 
planation for the encountered difficulty. 

Therefore, we cannot expect to find here an e x  
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t h a t  

Hence, 

and 

From t h i s ,  it follows t h a t  

A'", = - I [- 1 +Ax] U -- I x 
h q ' :  u1- - hU:':'U,xX' 

Sl+constC2 

or 

15.1 Intenration of t he  Sublayer Ewat ion  dth Complementary Term 

Let us return t o  the  fundamental equation which now becomes 

I u'*z [ 1 '"-'] \ U, AtuI dU, = 2 v - ~ 

I 
h ( l  --I) --v f- hU, u,- x 

We w i l l  t r e a t  ( t o  recapitulate) t he  case c = 1 and the  case 6 = 0. 

Case 6 = 1: 

Let us calculate 

lim [(s,- 1) c~i-c] (2) 1 - I  

when 6 -, 1, by putting 

whence 

On expanding t h i s  i n  a Taylor series,  we obtain 

k8 
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where 

Thus , 
9 = r (0) +hi" (0) ... = -Log- C'L 

u, 

when E + 0. 

Consequently, as 6 + 1, the equation is written in the form 

whence 

-Lon CY -- + Log u,- - x +constC1 = 2 v -- UfIz 
OUl u, u, (U, - q' 

1 - _  U'Iz 
u, (U,- x)-x)-LogC~ + C,] - 2 v '  

which, as above, will permit obtaining a 
U - X  We will now put C 1  = Log 

U:, -, 0 as U1 + 8; in fact, we then have 

1 u - >_ 
L5-Z .  

= 2< u, (U,- X) Log - 1  I 

Calculation of the integral can be carried out by graphical means. 

For A, we obtain 

h A = [&, + 1 Log (1 -;)I+ constCp 

and 

Let us now investigate the case 6 = 0. 
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Case 6 = 0. 

In t h i s  case, A 4 0 but 

i.e., 

and A + 0 i f  t h e  constant i s  zero. 

Similarly, 

f cons t  = X Log (U, - X) + c o n s t .  
,c\A't,.U,dU, I1  * =Xl& dU 

The fundamental equation i s  then wr i t ten  as 

U' (U, - el) + X Log (U, - X) +const : 2 v 2 U1-X 
or 

We put 

so tha t  U:, 

const  = - )i Log (ex - rr> 

-, 0 a s  soon as U1 -, 8:  

and, f inal ly ,  

a f o r m  t o  which we W i l l  refer f r o m  now on. This expression yields 



From t h i s ,  and Uc3 i s  readily derived as a function of U:, and 9, 
(and of Ul alone, since U;, i s  defined i n  Ul): 

---. 

and 

~ length o f t h e  path x - XJ required f o r  a 
a decrease i n  U1 from i t s  i n i t i a l  value 
t o  values extremely close t o  the  asymp- 
t o t i c  limit X, i s  so short  t h a t  it i s  

-:)I + (U,) (a u - cl + ?i Log *) 4- (2 u, - X) (q - cl. + s Log e--- -- 
u -s 

I n  particular,  it w i l l  be noted tha t  these par t ic les  a re  d i r ec t ly  dependent 
UO 
2 v  

on the  viscosi ty  fac tor  -. 
[We a r e  giving here tabulated values of the  calculation f o r  two cases of 
L. 

evolution of Ul(x) between U1, = 0.66 UO and X = 0.45 Uo f o r  - - - 1.1 
uo 



I IIII I l l  II II I I I I  

(, " 1  

a 
Thus, 8 w i l l  be the f i c t i t i o u s  

value of U1 a t  i n f i n i t y  upstream, 

I I I I I I I1 I I 1  111 I 1  I 11111 111.111111.1.11111.1 ,,..I I I I  111 II 11111 111 I I 1  I 

0.810 1.778 3.154 4.250 a~ 

16. Determination of t he  Constant 8 

However, a t  the  leading edge i t s e l f ,  the  boundary sublayer consists of a 
first pa r t i c l e  s t a r t i ng  t o  ro ta te  and then 
ro l l ing  along the w a l l ;  t h i s  layer  i s  such - 
o r  a t  l e a s t  we must conceive it a s  such - t ha t  
it alone const i tutes  the sublayer of constant 
velocity gradient Uc, ensuring a cancellation 
of the veloci ty  along the w a l l  and a con- 
nection with the  velocity UO of the external 
flow (Fig.10). The actual  boundary layer & 
does not yet e d s t  since a single layer of 
par t ic les  forms the  en t i re  boundary layer. 
From now on, we must s e t  8 = UO. 

4- 

r w F  
@--- "0 

"i B A  Wall  
x.0 

Fig. LO 

Evidently, t h i s  reasoning on a f i c t i t i o u s  s t a t e  i s  qui te  precarious0 Never  
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theless,  we a re  convinced t h a t  - u n t i l  proved d i f fe ren t ly  - it i s  ent i re ly  
logical.  

17. Return t o  t h e  Relations of t he  Problem i n  x 

The relat ions t o  be used here a re  f i n a l l y  as follows: 

A re la t ion  (I) of the base of the actual  boundary layeqwri t ten i n  the  form 

A re la t ion  (111) for  variations i n  the  losses  of momentum, wri t ten fo r  t he  
loca l  f r i c t i o n  coefficient 

C*f + 2 6 ( 3 y  (1 - 2 3.4) u r*T C*'la 

= 2  A <', + cB E + 2 v  - ..-- "'(l-"-l)L, 121. c I u, u, u, c* 

A re la t ion  (11) fo r  the  base of the  sublayer 

Finally, t h i s  must be supplemented by 

u 2v 1 
uo u, C*/' 

= -1. -- . 

18. Integration by Parts:  Development of t he  Quantities 

It should now be possible t o  make a step-by-step calculation of 5(x) and 
@(x) from eqs.(I) and (111) since Ul(x) can be determined by different  means. 

an i n i t i a l l y  extremely rapid evolution of U1 with x, meaning tha t  U& C 0 i s  
highly important. 
basic approximations with respect t o  eq. (I) 

However, one d i f f i cu l ty  a r i s e s  here: The demonstrated solution U1 (x) shows 

Here, we generally are no longer within the  scope of our 

53 



18.1 2 ~ s  P-o-s.sible L!2 
We will re turn t o  this case i f  the  ro ta t iona l  term varies  l i t t l e ,  which 

' 

happens i n  the  two following cases: 

The first case i s  tha t  i n  which U1 has reached the  neighborhood of i t s  
asymptotic value X and i n  which the values of U:, , U'ixz, ... i n  eq.(I) have be- 

come very low such tha t  the  equation i s  reduced t o  t h e  following form: 

Simultaneously, 

It i s  here 

eq. (111) becomes 

( I I I C )  

a question of a general case (independent of t he  point xj where 
i n i t i a t i o n  of the  ' turbulent" s t a t e  takes place) which, however, does not de- 
f ine  the evolution of 5 (and of C F )  i n  the narrow domain i n  which U;, i s  im- 
portant 

The second case of poss+ble solution i s  tha t  i n  which S J  i s  suf f ic ien t ly  
small for  having - even i f  UIx i s  large - E,, 5 ;  and V remain l o w  and i n  con- 
formity wi th  t he  approximations made. Consequently, it i s  necessary that  t he  

Reynolds number %tj = - 'Ox' , character is t ic  of t he  segment XJ, will be low 

which would mean tha t  SJ i s  very low. 

as long as it  i s  a ques:ion of studying the second domain from which eq.(Ic) i s  
derived and fo r  which Ulx = 0, without r e s t r i c t ion  of t he  Reynolds number. 

A method fo r  integrat ing t h i s  equation and the  resul tant  solutions will be 
demonstrated l a t e r  i n  the  text.  

V 

Conversely, the r e s t r i c t ion  tha t  E:, S:, V be small wil l  s t i l l  be respected 

18.2 2 
In  t h i s  Section, we w i l l  r e s t r i c t  our investigation t o  t h e  case of very 

According t o  a previous statement (Chapt.1, S e ~ t . 6 . 1 ) ~  the  terms in %>, 

low % J ,  so  as t o  study the  problem in i t s  simplest possible form. 
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111 

Uz3 [originating from (+) 
t h e  presence of a residual  deviation Au(S) existing a t  the  l e v e l  y = 5 between 
t$e/,:alculated f i e l d  U ( 5 )  and UO. 
5 SX3 wil l  be small with respect t o  5 5 ; .  
small (with SJ being very small). 
eq.(Ib) which, a t  t he  increments A, wil l  be wri t ten i n  the  form 

of the  equations of rotation] a re  connected with 
x 3  

A s  long as 5 i s  suf f ic ien t ly  low, t he  term & 
T h i s  wi l l  a l so  be the  case when WJ i s  

In t h a t  case, we can neglect the  term 5r3 i n  

with 

AUl uo u1-- 

UO 2u uo ] A x (solution to 1; = 0) -- - ---.- 
.and 

Ul 

uo 
[Let us r e c a l l  t ha t  k and B a re  functions of -, with Rbe ing  posi t ive 

and B being negative (see Sect.ll.1) 1 

The first s tep  has XJ as origin,  where the f i e l d  ceases being laminar. 

The Blasius f i e l d  i s  such tha t  U pract ical ly  reaches the  value UO of the  

external flow for Y = 6 L  5.5 E. 
A s  already mentioned, i f  the  last  laminar segment xj i s  the  first segment 

UO 

i n  which the  "stationary turbulent" s t a t e  begins, then the  limit of t he  sublayer 
of t h i s  segment i s  marked by the  l eve l  Y where the gradient U: ceases t o  be 
constant. Thus, we obtain 

3 N 0.365, U, 0.65 7-70. 
ai - 

- whence 

The laminar l o c a l  f r i c t i o n  coefficient,  according t o  Blasius, i s  expressed by 
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It w i l l  then be noted that 

i s  independent of xj. 

Let us take Ul as independent variable. Then, t o  the  successive AU1 < 0, & 
s t a r t i ng  from the first step, there  wi l l  first correspond very small Ax (factor  

and A5 such that UO 
2v 
- 

" 0  

Here, 5 increases rapidly. U 1  

- A 1 - -  
uo i s  weak with respect t o  ( 2v U1 

UO UO 
Since the term - - 

U1 

UO 
c7 1 - -  

- B ) ,  the  variations i n  the  coefficient of f r i c t i o n  ACY a re  la rger  than zero, 

and CT increases rapidly. Then, fo r  the same s teps  Ax, the terms AU1 < 0 will 
decrease as soon as U1 approaches i t s  asymptotic value X. 

B 
IT2 - 

Ax becomes the  pr incipal  t e r m ,  which In  A s ,  the  term - - - V " A 
2Ua u1 s - - - 

UCl 
means t h a t  5 remains a (slowly) ascending function of X .  

So far a s  the ACF a r e  concerned, they will first weaken i n  the  same manner. 

A s  soon as the remoteness x - xj i s  suf f ic ien t  and as soon as U:, has simul- 
B 

Tr2 - Ax 
5 

- v  $ A  - -  taneously become suf f ic ien t ly  minimal, we will  have AT = - 
- 2uo 

(with U l  taking a value very close t o  X)*. uo 

S M  taneou sly, 

u 

To distinguish more rgadily Jerms referr ing t o  the  case i n  which U:, = 0, we 
w i l l  use the notations Ci and 5 with Vinculi. A t  t he  same t h e ,  Ul -, X. 
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- - 
($6 A5 - f 

- ax 2 A  
, tee. ,  as soon as the  value This means tha t  A$ will  be zero a t  - - - 

I 
. .  

Thus, C?,c passes through a ".m as soon as the slope 5 :  i s  suf f ic ien t ly  shal- 
low: 
i n  accordance with the  reduced equations established i n  t h i s  manner, correspond- 
ing t o  ~1 = X, u:, = 0, 

Star t ing from the corresponding point, CF and 5 wil l  continue t o  develop 

I 
-I-; 

B 
Tr2 - -, - v A 

2% X E i s  easy t o  integrate,  yielding Lu The re la t ion  5, = - ' - - 

[ x  - .,I. 

The quant i t ies  Tj, XJ a r e  the  or ig ina l  values, 5.e. those corresponding t o  
the conditions where q- passes through i ts  maxknum (or very close t o  it); see 

Fig.ll.  

I I I .  I ,  

Wall x i  2j 

- u  It is  already known t h a t  XJ  = 

Let us attempt t o  determine yd: 

- - - X J o  

In  the  domain XJ < x < FJ, 
we have seen tha t  - i n  principle - 
t h e  step-by-step var ia t ion A5 re- 
sul ted from the  term i n  AU, < 0 by 

For AUl, extending from U l J  
which i s  t h e - i n i t i a l  value i n  the  segment of connectivity with the laminar s t a t e  
up t o  X which i s  the  final value, we thus have 
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By integration, we obtain 

meaning tha t  here 
S 

Since 5 j  i s  connecte- with the  thickness 6, of t h -  1 
i n  the segment xj by 

( j  = d 6, E 5.5 d ( G  0.635) 

we obtain 

V 
and, somewhat fa r ther  on, allowing fo r  t he  fac tor  i n  - 
been neglected about xj (as wel l  as U1 f X), 

u, 

minar Blasius layer  

2 B  n -  
e A which had 

X - 
UO 

It will be noted t h a t  t h e  r e s t r i c t ions  made f o r  t he  use of t he  integrat ion 
by 
S(x7.  The conclusions drawn, spec i f ica l ly  the presence of a m a x i "  f o r  CF(Z3),  
remain val id  a s  does also the  corresponding re la t ion  

arts a re  applicable only t o  eq. (I) i n  5 .  Thus, they a f f ec t  o d y  the  l a w  

.. .. ... . .. - - 



since this i s  d i r ec t ly  derived from eq. (111) . 
It should be noted a l so  tha t  5 would become independent of XJ and would be 

ident i f ied  with a unique solution r(x) i f  the  bracket before xj - were zero. 

A t  t h e  same time, CFj would be ident i f ied  with a value q ( x ) ,  independent of xj 

It wi l l  be demonstrated below t h a t  t he  l a t t e r  i s  a general f ac t  (not connected 
with swll values of W J )  and t h a t  it agrees with prac t ica l  experimental resul ts .  

The first f ac t  [uniqueness of the solution F(x)] i s  not general; it i s  
linked t o  t he  small values of WJ, which i s  the  only case investigated here. 

V 

UO - 

19. Condensation of the  Solutions t o  U& = 0 about an Asymptotic Solution - - .  - -  . .  

I n  accordance with the  general r e su l t s  of dimensional analysis (Ref.2) ap- 
plied t o  the  boundary layers, the  l a w s  of evolution of the  quant i t ies  i n  ques- 
t i o n  depend exclusively on the  corresponding Reynolds parameters. 

For downstream segments f a r  removed from both the  leading edge (x > 0) of 
the  p la te  and from the segment xj of connectivity between the laminar and "turbu- 
lent"  states, the loca l  quant i t ies  t h a t  characterize the boundary layer  should 
tend t o  a s t a t e  depending exclusively on $Ix since the episodic events occurring 
far upstream no longer have an influence. This, which agrees with the  experi- 
mental facts ,  i s  a necessary consequence of dimensional analysis as soon as the 
existence of de f in i t e  l a w s  governing these phenomena i s  admitted. 

The solution formed by a boundary layer  which i s  "turbulent" from the  
or igin x = 0 thus w i l l  be an asymptotic solution toward which a l l  solutions with 
a t r ans i to r i ly  laminar history wi l l  tend (this W i l l  be especially t rue  f o r  the  
f r i c t i o n  coeff ic ients)  \ 

, s t a r t i ng  from a cer ta in  segment x and f o r  an arbi- In addition, since - U1 

UO 
X 

U O  uo 
t r a r y  par t icular  solution, tends t o  a de f in i t e  limit - , this limit - 
should be a universal  absolute constant i r respect ive of t he  par t icular  case 
under consideration". 

X 19.1 D e t e r r e t i o n  of t h e  Value of - 
UO 

It is  not easy t o  f ix the  numerical value of -* , however, s ince t h i s  
UO 

value i s  universal, we a r e  en t i t l ed  t o  make use of the  case of small 31 t reated 

'' The rigorousness of t h i s  conclusion i s  obviously l imited by the  approximations 
of the  theory. 
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u1, i n  t h e  preceding Section. It i s  known t h a t  this value must be lower than - 
UO 

with respect t o  t h e  boundary of t h e  sublayer i n  t h e  last laminar segment xj 

(whence - u1 J 
UO 

0.66). On t h e  other hand, i n  t h e  expression of F2 given i n  t h e  

preceding Section (which i s  val id  only f o r  small values of %,), t h e  term i n  x 
i s  t h a t  corresponding t o  t h e  asymptotic solution: 

i.e., 

Fromthis,  we  derive 

and, s t i l l  for  t h e  asymptotic solution, 

If we first assume t h a t  t h e  statement a t  t h e  end of t he  preceding Section 
i s  rigorously applicable, then t h e  maximum of Cp must be iden t i ca l  with t h e  
value calculated here, meaning t h a t  (q)hx (or  5 : )  of t h e  complete expression 
must be independent of xi. This condition i s  wri t ten as follows: 

S 
1-- E, 

. .  
= 0, 

a t  least i n  first approximation. 
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are and - as soon a s  - This condition, i n  principle,  defines - B 
A 

X u1, 
Ut3 UO 

B 
A fixed; however, - i s  not accurately known numerically (see end of Sect.6.2). 

On the  other hand, i n  discussing the integrat ion by pa r t s  we showed tha t  
t he  loca l  f r i c t ion  coeff ic ient ,  s t a r t i ng  -..a from the  laminar value i n  x3,should in- 
crease, t o  reach i t s  maximum C?;. i n  X J  = x ~ .  
Reynolds number fR,, , will  be 

This coefficient,  a t  t h e  same 

From t h i s ,  we derive 

Eliminating between these conditions, we obtain A 

o r  

(1-;). X 0.065, 

w i t h 2  being a function of - . Thus, without making use of t he  more or l e s s  
UO 

0.44 t o  0.45””, which we w i l l  re- 

A 

B X 
A inaccurate determination of -, we find - 

t a i n  a s  the  most probable value (then, we find - “= 1.58, A = 0.113). 
UO 

I B \ 

where qg + 
s l  + q E  

P z  - u o x  
Let us express the  coeff ic ient  of t o t a l  f r i c t i o n  Cf = 

+ q E  i s  the  l o s s  of r a t e  of f l o w  of t he  momentum i n  t h e  segment x under con- 
sideration. This coefficient i s  connected with t h e  l o c a l  coefficient,  a s  

’$ Nikuradse gives 0.38 as r e su l t  of his experiments. Considering the  configura- 

t i o n  of t he  f i e l d  U(y), it s e w  tha t  - should be s l i gh t ly  higher than 0.45, 
uo 

possibly because of t he  f a c t  that one should have taken - > 0.66. 9, 
UQ 
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follows: 

or 

1 
x o  

which, fo r  large x, tends t o  - 1 ETdx, which i s  the  asymptotic solution (x). 

20. Evolution of the-AspwtoticTotal  Frgction Coe_f_f_ient 

Let us re turn now t o  the  equation i n  5 (derived from the  fundamental rela- 
We w i l l  take from t i o n  fo r  rotat ion a t  t he  base of the  ac tua l  boundary layer) .  

t h i s  equation only t h e  terms i n  U:, (and U&,) since the  study t o  be made con- 
cerns the,,psymptotic branch where U1 = X = const. 
term i n  gX3 untouched, which i s  derived from the  presence, i n  eq.(I), of resi-  
dual velocity terms Au(5) a t  t he  l eve l  5 since, f o r  large evolutions of x, i ts  
character is t ic  evolution may play an important role (see statements i n  Sect.6). 
This i s  wri t ten i n  the  form 

However, we will leave the 

*' - 
1 1  v A  z-&a E;",a =-- 

2u, X '  

For the Reynolds numbers, t h i s  equation i s  expressed by the change of /60 
variables: 

whence 

Similarly, 

so  tha t  

Putting 
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u, 

the equation is written in the form 
tSc (LS$'~* - a 1st (rrC$',~: = b. 

To facilitate the writing, we will use the notations 

whence 

The hypotheses of small 5:55, used in establishing the relation in 5 (x), 
are expressed .by identical hypotheses concerning r;, rso 

4 Let Y = r , from which we obtain 
Y', = 4 r3 fx ,  Y 4 r3 rtnx,. 

In Y, the equation becomes 

i.e., on integrating a first time (under the condition that b is assumed as con- 
stant), we obtain 

23.1 Inteaation of the Equation in Y /61 
Let us put Y in the form of an algebraic expansion in x, of the fourth de- 

gree : 

Y = U X4 f p K3 + y X 2  + X + c a  

For identification, we obtain 
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= 6 a a x Z  + (3 @ a + 2 b)  x + y a +e, 

Fromthis  a first par t icu lar  solution i s  obtained by putting 

1 
36 n2' 

a = 36 a2 a2 or a=- 

= 2(3 Pa + 2 b) G a a  or $ (1 - 36 u2 a) = 24 b a a, 

y =  I 2 a a ( y a  +c") + @ @ a  +2b)' or *;(I --12aaz) = 1 2 a a C  

q = 2 1 (Y a -+ q (3 P a + 2 b) 5 I 
1 = (Y a + c")Z,  

+ (3? a + 2 q z s  
or . 1 ; = 2 ; ( y a + C ) ( 3 $ ~ + 2 b ) ,  

whence 
Y, = a x 4  + p x3 + y x 2  + q x + <. 

In  addition, a second par t icu lar  solution ex i s t s  which i s  obtained by set- 
t i n g  CY' = 0 whence B '  = 0. T h i s  leaves Y;z = 6B'x + 2Y' = 2Y' constant. 

The equation 
n - 

l /Y --z\ '"xz= 2 / I  x + e  

reduces t o  

and the  second par t icu lar  solution W i l l  be 

Y,, = 4 b2 x2 + 4 b (e + a y') x + (e + a y')Z. 

The general solution of t he  suggested equation thus becomes 
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where kr, k11 a re  constants. This yields 

Y = kl a x4 + k, p x3 + (y kl + 4 b' k,,) xz + [q k, + 4 6 (e + CI y') k,,] x 

+ 11: kl + (c" + a y'I2 kt,], 

whence 
cc; = ". 

The t o t a l  f r i c t i o n  coefficient,  according t o  i t s  definition, i s  expressed a s  
follows : 

Consequently, 

+ 
(where 2 i s  a constant)" which i s  f ina l ly  wri t ten i n  the  form 

20.2 Relative- Signi2i.c.ance&f the Coefficients an4 Evolution of Friction 

Let us now invest igate  i n  somewhat more d e t a i l  t he  ident i f ica t ion  condi- 
t ions determining the constants a, B, Y, 7 ,  5 of the  first par t icular  solution. 
These yield 

1 
36 (12 '  

a=- 

(1 - 36 up a) p = 24 b a a, 

i .e. ,  b /63 
(1 - 1) 3 = ;0.607, 

meaning tha t  again B -t -. 
i n  5 ,  retained here, i s  only approximate (for rotat ions a t  t he  base of the 

* Here, 2 depends only on - as i s  obvious when re fer r ing  t o  i t s  expression 
- X 

(Chapt.111, Sect.11); 2 = 0.113 fo r  - = 0.45. 
UO 

Obviously, t h i s  i s  not rigorously so since the equation of t he  th i rd  order 

X 
uo 
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V 
ac tua l  boundary layer,  spec i f ica l ly  the terms in - 5za have been eliminated). 

Nevertheless, t h i s  means t h a t  B assumes very large values. 
UO 

"hen, 

y (1 - 12 a a2) = 1% a a C + (3 3 a -+ 2 b)2 g 9 a1 $Zl 

The boundary conditions tha t  must-determine the  three constants of inte- 
gration Q ,  kI ,  kI1 of t he  equation i n  5 are, i n  principle,  the conditions t o  be 
wr i t ten  a t  the  s t a r t i ng  point of t he  boundary layer,  i.e., for extremely small 
W x  (here, the  asymptotic solution i s  involved). 

These conditions, i n  par t icular ,  lead t o  a def in i t ion  of the constant term 
of Y(N),  namely 

such tha t  

w i l l  assume a f i n i t e  value, with B being extremely la rge  and k1 being extremely 
small; i n  Y, f o r  moderate w, t h i s  w i l l  leave 

Y E 4 ba kt1 x2 + \ 4 b (e + Q y') X . 1 ,  { x + 1 1 k1 + (e + CI Y ' ) ~  kit 1. 

Thus, with only an a l te ra t ion  of the  constant term, Y i s  ident ica l  with the 
second par t icular  solution t o  which there  corresponds the  equation i n  5 ,  of the  
following reduced form: 

c y z =  b. 

Thus, for moderate W,, we W i l l  obtain 

where 7, 5, T reduce t o  the  terms i n  k I I  (which ?7 and do not contain). 

When 3, i s  much larger,  the neglected terms w i l l  gradually gain signifi-  16r, 
cance with respect t o  the  terms retained above, which incorporate W, i n  denomi- 
nators a t  the  highest powers. For W + a, the  pr incipal  term will  basical ly  re- 
main as follows: 
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(a nonzero l imit ing f r i c t i o n  exisks here), with the t e r m  being necessarily ex- 
tremely small i n  comparison with @, as indicated above. 
t o  define the conditions of or igin of the  turbulent layer  corresponding t o  the  
asymptotic solution, since the  charactpr is t ics  of t he  slope t o  t h e  or igin 5L(x = 
= 0) and of t he  radius of curvature s 3  (x = 0) are lacking. 

t h a t ,  fo r  x = 0, the  "turbulent" layer  - i f  it were able t o  ex is t  a t  a l l  - would 
reduce t o  the  sublayer since the  velocity a t  the  boundary is  Uo. 
of magnitude of the  thickness of a l i n e  of par t ic les  i n  ro l l ing  motion, we found 

y = - (see Sect.9). 

In  fact ,  we a r e  unable 

A t  most, we  could make the following statement: Previously, we mentioned 

For the  order 

- v 2 0  

UO 
Thus, the loca l  f r i c t i o n  coefficient i n  x 0 would be 

p v  U' 
C ~ ( T C g 0 )  =-.A- 20 - 0.1. 

$ U: 

Consequently, i f  t he  layer  could start from the "turbulent" s t a t e ,  the  loca l  

f r i c t i o n  coefficient would be lower than t h a t  of the laminar s t a t e  = 

= ( 
would explain i t s  necessary establishment i n  the start-up zone x 

L 
0.665 ) + 

as W -, 03. The laminar s t a t e  would be a t  maxi" entropy, which m 
0. 

For a quantity x which i s  la rger  but s t i l l  suf f ic ien t ly  small t o  render the  
integrat ion i n  par ts  of the  preceding Section (Sect.19) valid, the  loca l  (asymp- 
t o t i c )  f r i c t i o n  would be 

X B 
UO A for  - = 0.45 and - = 1.57,c;i = 0.113. 

T h i s  represents the domain of increase i n  laminar and "turbulent" f r ic t ion .  
- 1.34 From t h i s  follows the "turbulent" t o t a l  f r i c t i o n  c t  = -- This expression, 
K 

val id  f o r  small 
expression 

values of R,, must be i n  continuous connection with the  general 
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This means that ,  i n  t h i s  domain, iu' and ' a r e  very small with respect t o  /65 

.~ - 

3 .  lo6 10 106 100 - 108 315 10' 2.106 . a. ....... 0.31'. 10' 1 - I O R  

loglo ii; . . . 5.5 6 6.30 6.48 7 8 8.5 

CJ . * . . . . . . 6.8. 10-3 5 . 1 5 .  10-3 4.35. 10-3 3.05. 10-3 2.97. 10-3 1 . 0 ~ .  l e 3  1.78. 10-3 
- 

log 103:Cj. 0.836 0.7 1 0.64 0.506 0.47 0 . w  0.25 

c;. . . . . . . . 5.3. 10-3 3.80.10-2 3.33.10-3 3 - 10-3 2.32. i o - a  1.72.10-a 1.72.10-3 
log 10' * q. 0.72& 0.W 0.52 0.476 0.36' 0.240 0.236 

_____-_- ~ _ _  
- 

-. 
- ' and tha t  fl and 5 can be neglected. Lence, we obtain the  following value 
32 

4 c  

, 

fo r  JY : 

No fur ther  information can be gained from the integrat ion by par ts ;  one 
would have t o  be able  t o  extend i ts  domain of va l id i ty  t o  t h a t  i n  which 5 : ,  5 $  
would cease being small. However, t h i s  i s  not t he  case here. 

Two fur ther  conditions a re  required fo r  determining and F. 

S . 3  Numerical Results 

Obviously, these resu l t s  can be obtained from a comparison wi th  prac t ica l  
data such as those obtained by Wieselsberger, Gebers, and Kempf which a r e  clas- 
s ical .  

We find 
- - 

a s 8 a 700.10-0 = 0.7. 10-3 
so  tha t  

The accompanying tab le  gives the elements of t he  curve %(%), while the  
Diagrams I V  i n  Section 40.5 indicate  tha t  the law derived i n  t h i s  manner from 
the  theoret ical  expression of Cf agrees sa t i s f ac to r i ly  wi th  t he  experimental 
points. 

We will a l so  calculate the loca l  f r ic t ion ,  since 
- 3 ' 5  1 7  
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It Will be noted t h a t  t h e  minimum f r i c t i o n  for  $3 + i s  = or ?f /66 - 
B - 3 1.7 X lo+ . The tab le  a l so  shows tha t  Cu and - become negl igible  with re- 

spect t o  - fo r  3 < 1000. 

previously used integrat ion by parts.  

This accurately defines the  va l id i ty  domain of t h e  32 

21. Deterlpination .of a Theoretical Value of 

Exen i f  one cannot proceed t o  a theore t ica l  determination of t h e  coeffi- 
cient B ,  an attempt must be made t o  define a t  l e a s t  i t s  order of magnitude by 
theore t ica l  considerations. 

First of a l l ,  l e t  us review the s t a t e  of t he  a r t  as of today. 

21.1 Status of t he  Problem 

In  the  preceding Sections, we performed calculation of t he  evolution of t he  
boundary layer  on passing from the  laminar t o  the  s ta t ionary turbulent s ta te ,  
for  t h e  case i n  which t h i s  t r ans i t i on  takes place a t  l o w  Reynolds numbers cor- 
responding t o  the domain in which 

i n i t i a t i o n  of ro ta t ion  of t h e  sublayer elements such tha t  6 (see Sect.12.3) i s  

close t o  zero, and a c r i t i c a l  veloci ty  X of t he  sublayer such tha t  - - 

= CTL. To t h i s  corresponds a mechanism of 

X - 0.450 
uo 

This domain of t r ans i t i on  (denoted by the  subscript  j ) ,  considering only 
the  stationary &vier-Stokes equations, i s  extremely short ( A 3  - 6) ;  t h i s  pre- 
vents US, wi th  t h e  approximations used, t o  extend our calculation t o  the  more 
important W J . 

We also  were able  t o  calculate  the  form of theo re t i ca l  evolution of t h e  
loca l  f r i c t i o n  coeff ic ient  CT corresponding t o  t h e  domain in which Vi, 
U1 X (where X might possibly decrease slowly with increasing x). 

In  the  theo re t i ca l  l a w  

0, i.e., 

7 i s  known while 
above reasoning, it i s  known t h a t  ct = klQ' i s  cer ta inly minimal in comparison 

with F, such t h a t  Cu Will play a ro l e  r e l a t ive  t o  - only fo r  r e a l l y  la rge  91. 

and s are not @own despite t he  f a c t  tha t ,  according t o  t h e  

- 
- $3 

On the  other hand, & will be notable only f o r  very low values of 3. 
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Finally, if we know the l a w  6(Ul) i n  the  zone i n  which U1 i s  i n  evolu- 
t ion,  then the  l a w  of thickness 8 of the  sublayer (see Sect.15) will result from 

/67 

Fromthis,  it i s  easy t o  derive a condition f o r  the  l o c a l  f r ic t ion :  

c;=-.-- 2 v  u, 1 
Go Go i. 

N v 
With Ul, 0.66 UQ, and thus € 3  = 0.36, the  expression 6, = 2 -&, ($ 

UO i s  writ ten as follows: 

- c; =-. 2 v  u; 
uoGj [l +\" u, j (1 +49' 

val id  for the same zone. 

If we consider a moderate value of 6, this quantity Will be removed from 
under the in t eg ra l  sign. For U1, reaching the asymptotic value X, we will have 

S 

A s  for t he  laminar s t a t e  

it then follows tha t  

21.2 Possible Forms of Evolution of Local F r i c t i E  

Next, l e t  us es tabl ish two working hypotheses: 

1) tT = kla w i l l  be considered as equal t o  zero. 
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It should be mentioned tha t  this i s  not incompatible with the previous 
theore t ica l  data and also not with the physical aspect of t h e  development of 
f r ic t ion ,  

9 / 6 8  
2) O u r  second hypothesis provisionally w i l l  be as follows: A s  soon as R J 

which represents t he  character is t ic  of t he  point of i n i t i a t i o n  of t he  "turbulent 
s ta te ,  i s  no longer small, the velocity 
gradient U( i n  t he  sublayer wil l  de- 
velop rapidly and t h i s  i n i t i a t i o n  wil l  
manifest i tself  i n  the  sublayer by in- 
ducing rotat ion of i t s  elements i n  ac- 
cordance with an average mechanism t o  
which a cer ta in  value of 6 i s  attached. 

It should be noted tha t ,  when83 i s  
small, these gradients d i f f e r  l i t t l e  
from tha t  exis t ing i n  the  laminar layer, 
there  i s  only a minor change i n  the 
s t a t e  of rotation, and one approaches 
the constant-pressure process (second 
scheme, see Sect.12). This means that ,  
fo r  3 = 3 0 which i s  re la t ive ly  weak but 
nevertheless the la rges t  value t o  which 
the  simplified step-by-step solution 
investigated i n  the  preceding Section 
i s  applicable, we have q- CE . (For 

Fig.12 
the  time being, we a re  unable io define 
the  order of magnitude of Re except by 
experimental means. ) 

Nevertheless, l e t  us consider a start-up value R J, , l a rge  with respect t o  
To t h i s  we wi l l  assign a cer ta in  average value of 6, namely 61. 30. 

when t h i s  value i s  fixed, t he  re la t ion  
Just  about 

(see above, Sect.12.3) w i l l  show tha t  ?' i s  represented, i n  the  logarithmic 
diagram (Fig.12) by f J  1 

This f igurat ive point w i l l  thus be located above log  qL 
a t  increasing R, the  point w i l l  shift along the  s t ra ight  l m e  A1 of a slope 

lo3. From t h i s ,  /69 
5 
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1 
4 

- -, since 

whence 

- 
I n  t h i s  image, B then i s  a parameter depending in principle  on % J ,  which i s  the  
charac te r i s t ic  of t h e  point of i n i t i a t i o n  of t h e  turbulent s t a t e .  

The same reasoning can be used fo r  a l l  ~ R J ,  > 80, t o  which there  corresponds 

a system of pa ra l l e l  s t r a igh t  l i n e s  of slope - - , originating a t  t h e  points jn. 

Among these, one l i n e  (npe ly ,  A )  passes through the  point jo of the  coordinates 
log go, log  C;; (30) 10 . 
a condensation of t he  character is t ics  of t he  "turbulent" boundary layers  and 
thus a l so  of t h e  l o c a l  f r i c t i o n  CT i n to  a unique asymptotic solution mst exis t  
there. 

4 

However, it has been shown tha t ,  for very la rge  3, 

Consequently, it i s  necessary tha t  a l l  s t r a igh t  l i n e s  A i ,  A,, ... converge 
i n t o  a s ingle  l ine .  
led t o  the preceding diagram. 

curve log CF coincides wi th  t he  s t ra ight  l i n e  A of slope - -, passing through 

j,, 
forms . 

This i s  impossible with t h e  hypotheses made here, which 
However, it Will become possible as soon as the  

1 
4 

Ln t ha t  case, t he  diagram w i l l  assume the  second of t he  above-indicated 

21.3 Consequences 

A preliminary and highly important conclusion can be drawn from t h e  f ac t  
t ha t  the  f igurat ive s t ra ight  l i n e  A of log C$ i s  unique: On i n i t i a t i o n  of t h e  
"turbulent" s ta te ,  t h e  loca l  f r i c t i o n  coeff ic ient  W i l l  osculate the  f igurat ive 
unique curve of t h e  asymptotic l o c a l  "turbulent" f r i c t ion .  W e  w i l l  show l a t e r  
(Diagt-am I11 i n  Sect.39.1) t ha t  t h i s  fundamental f a c t  agrees well  with prac t ica l  
experience. 

before (see S e ~ t . 1 2 ) ~  we have 
Another conclusion concerns the development of 6 with 3. I n  fact ,  as shown 
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and thus 

i + c  . . . .  
c . * . . . , . . 

For 3 - 30: 

2.45 + 0.82 1.96 2.33 

- 0.18 0.96 1.33 

Betweenthese values o f % ,  we have 

T h i s  r a t i o  w i l l  be known as soon as 30 i s  known. 
parison with the  experimental results l e d  t o  values of930 of t h e  order of 10 
( t h i s  resu l t ,  obtained by a d i f f e ren t  process w i l l  be discussed la te r  i n  t h e  
text) .  
first increases rapidly close t o  6 - 0 and then slowly r e jo ins  i t s  asymptotic 
value of 1.6, in accordance with t h e  accompaeng table. 

A determination of by c o y  

It i s  then possible t o  determine the  development of 6 w i th%,  which 

21.4 Correction i n  t h e  Scheme of t h e  Domain o f 3 0  

Actually, i n  the  domain of %or t he  t e r m  i n  ' - -~ 

of t h e  complete expression 
for  t h e  l o c a l  turbulent f r i c t i o n  7 
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i s  preponderant, such tha t  

I n  t h e  preceding scheme, it i s  necessary t o  subs t i tu te  the s t r a igh t  line A by 
a s t ra ight  l i n e  A 
f igurat ive s t ra ight  l i n e  A L  of the  laminar f r i c t i o n  w i l l  be s l i g h t l y  superior 
t o  9$, i n  j; t o  which 93; corresponds (Fig.13). 

reduces t o  ?iT "= 0.75 &, so tha t ,  i n  t h e  loga- 

located s l igh t ly  below A, such tha t  i t s  in te rsec t ion  with the  

4 F  
For 93 > G, t h e  term 

rithmic diagram, we obtain 

/= 1 1 
log = log 0.75 \, p --410g LC, log C*J, = log 0.667 -$log LC. 

Putting 7 = l o g  ?$ and x = l og  %, the  equations of t h e  s t ra ight  l i n e s  A', A L  
W i l l  become 

.z N - -  '4 e*,- -- 
IO 4' .I)L = %'-- 2' 

while t h e i r  intersect ion i n  & = 
= bog Ri will be such tha t  4 ( q o  - - ?loL) + x; = 0, so t h a t  

0.63 

Fig.13 

and i t s  complete expression 

If it i s  assumed tha t  very lit- 
t l e  deviation ex i s t s  fo r  W = %: be- 
- tween the  approximate expression of 
CF, namely 
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then we can put 

where 6 is small. 

Let us set 

From this, we obtain 
- -  

- $=---.-=- y 1 0.630 
UT’(l0 ’* &lo 

in accordance with the above-given expression. 

Consequently, IJ. = ’ = 5. We also obtain 
0.630 

0.5 p + 0.75 
(1 4- py’4 = 0.75 (1 + 8). 

- 
CF(RA) 

i.e., 6 = 0 . q  as well as = 1.14. From this, we derive cA = 0.05. 
CFL (GI 

21.5 Determination of a Probable Value of 8; in Accordance with the 
. -- .- - 7 - - -  - - _  

Relative &portance of the Terms 

Thus, for 8 = %A, the totality of the quantities in question is known ex- 

However, so as to keep the analysis coherent, it is necessary that the 

cept for rrt; which is still lacking. 

general hypotheses on which the analysis is based can be verified. 

hypotheses refers to the order of magnitude of 

streamline. 
(see Sect.2 and the corresponding statement), should be of the third infinitesi- 
mal order, with the first order being about at 0.1, 

One of these 

which is the slope of the 

I% has been demonstrated that this term should be negligible, i.e. 
U1 

Consequently, the third 
order is near 0.001 so that it becomes necessary that - V(4 < 0.001. However, 

U1 
with E: = h$+‘, such that 

I- 

C , ~  = 0.365 . 5.5 43 = hU;j‘. 
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we obtain 

The established turbulent state i s  characterized by 

i.e., 

Since, according t o  the  continuity equation, 

r: U'l, r: G'la. 
A! hU;+r c '  

r . z  ' - 2  with  (%)'==--=-- 

c 
it follows t h a t  V(6)  = -2 €Utx and, consequently, 

AU1 V 
Let us now evaluate Ul, = -. Here, lAUl[ UIJ  - X and Ax = - AB. 

Ax UO 

t ha t  ac tua l ly  t h e  t r ans i t i on  extends from - % It w i l l  be shown below (Sect.39) 

t o  %J , meaning t h a t  we have A 3  = 

2 
3d - from which it follows t h a t  
2 

( w i t h  Uij G 0.65 Uo, X = 0.45 U,,). 

Thus, 

0.001, in % = %to',  w i l l  become V(6 1 
The condition - 

u1 
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- 0.66 t o  0.69, i.e., 9th 2 650 - 900. The order of mag- f o r  6 = 0.05 (at  - - 
nitude of lo", obtained already by experimental comparison, can be approximately 
defined; then t h e  order of m a e t u d e  of t he  value furnished by such a comparison 

(0.7 X lo-") w i l l  necessarily be obtained f o r  B 

Ul, 

UO 

0.63 
-* 
3: 

Obviously, t h i s  i s  not a r e a l  proof but only a statement having the  purpose 
of demonstrating tha t  it i s  unnecessary t o  use experimental r e su l t s  fo r  defining 
the order of magnitude of 3; 

21.6 Case of the Constant Term being Nonzero 

Later i n  the t e x t  (Diagram IV i n  Sect.&0.3), we w i l l  give a plot  o f  the  
s t ra ight  l i n e  A' with respect t o  the  experimental points obtained by Wiesels- 
berger, Gebers, and Kempf (as well  as the curve C i  where B and 
mental origin).  

X lo", show an upward convexity of the  curve log 10 

a re  of experi- 

Kempffs experimental points wi th  respeCt t o  %,,e&ending from P-to 350 X ,/'& 
Cf (and log 10 C y )  which 

would.not be compatible with the general theore t ica l  expression ?f = 
9t 

except under the condition of assuming 
respect t o  8, as s t ipulated by the  theory (5 

as  being nonzero but very small with 
8 x 10-I"). 

One o f t h e  basic premises of 
our above reasoning fa i ls  i n  t h i s  
case, so tha t  it i s  no longer pos- 
s ib l e  t o  affirm the existence of a 
unique asymptotic solution except 
fo r  8 * a, where a l l  curves A, ad- 
mit of t he  horizontal asymptote 

log 3 lo3. A pr ior i ,  it i s  now 
impossible t o  s t a t e  t h a t  the  curves 
A, i n  the  zone i n  which they a re  

r ec t i l i nea r  (z s m a l l  with respect 

Fig. U, 
B \  t o  w/ are  not d i s t i nc t .  To each 

of these, a value B, i s  then as- 
signed (Fig.U,). 

Let us attempt t o  define the  domain of var ia t ion of Fn. For this, l e t  us 
consider the domain of !Jl enclosed between 30 and 3 1 1 ,  with 9 t r r  being the value 

1 of 3 r e l a t ive  t o  the  intersect ion of t he  s t ra ight  l i n e  A (of slope - - 
nating from ja) with the  asymptote l o g 3  10" 

k ' Origi- 

0.22. Since the equation of A, 
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with the  notations used before, reads 

= 1.42 
where 0. 67-  lo3 

x9 = log mo = 2.81 and = log cyi,. 103 = log 
G O  

t h i s  intersect ion w i l l  take place fo r  

whence 

This would define the order of magnitude of large values of 3 where the  
constant starts t o  intervene i n  a noticeable manner. 

It i s  then found that :  - 
from which, f o r  1) In  R = WO, t he  quantity 7 i s  large compared t o  - w 

Y B n  
R 

Bo 0.65 x lo3, it follows tha t  

en 1 3.2 3.2 a * E a  = 10.0.42. 106 or E, < 1.18 * 

- 
B n  2) For R - $311 = 40 X lo", the  quantity - must be of the same order as 

'I' 8 x lo", must be small with respect t o  -* Hence, CY, i.e., f o r  3 < - F w - 
R 5 

i.e., 

The quant i t ies  Fn a r e  enclosed between two approx5mate limits. 

From th is ,  f o r  example, a t  3 = 1 X 10" which i s  the  Reynolds number fo r  

e it follows tha t  36 which 67 and 2- can be neglected with respect t o  - 7 
w' 

F B  
0.75 - will be comprised between R 



meaning that the quantities log C:E lo” range between 0.58 and 0.64. 

It is then no longer possible to affirm the exist,ence of a true asymptotic 
solution A’; nevertheless, as shown in Diagram I1 in Section 21.7 a condensa- 
tion of the solutions about A’ tskes place, which is a narrow condensation such 
that the above conclusions with E 0 w i l l  remin approdmtely valid even if 
assumes the value suggested by the exceptional measurements by Kempf. 

However, still another explanation might exist: It is known from experi- 
mental results that the wall roughness increases the local friction to such an 
extent that, taking K as the dimension of the roughness, p:(%) assumes the form 
( A ” )  indicated in Fig.15 at - = const. K 

X 

However, Kempffs experiments were made with water Tee., at a very low v 
(1.0 x at So as compared with 14.4 X in air). 

Referring to the curves given by Prandtl on the effect of roughnesses & 
E o f  the same order as that appearing (Ref.%), a change in the function 77 = 

in Kempffs measurements will be obtained for - = 1 x lo-‘. 
fR 

K 
X 

We do not know the length x of the plate nor the velocity used by Kempf. 
Nevegtheless, to obtain 3 = 300 X 

x 10 at x) m/sec (corresponding 

to a height of charge - p u,”= 
- -  - loo X 400 = X),OOO kg/m2, or 

2 

2 
H = x> m), it is necessary that 

0.1 * 10-6 
20 z = -- - 300 - IOo = 1.50 m. 

-- K 
X 

The roughness - = 1 X 

reached for K = 1.5 X 

was 

i.e., 
Fig.15 

1.5 p. 
surface. 

This roughness value corresponds to a quite noticeable smoothness of 

It might well be - and in our opinion with considerable probability - that 
lo3, revealed in Kempffs measurements, is a the curvature of the curve log 

manifestation of the roughness effect. 

If this were so,  would have to be considered as zero at the state of 
perfect smoothness, meaning that an asymptotic solution in the strict sense would 
exist. 
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Finally, another possibility to be studied might be that of the possible 
existence of nonstationary components in the boundary layer, at the loss of 
moment of momentum. In our analysis, we limited ourselves until now to the 
study of stationary components, while the development of friction had been de- 
duced from eq.(I) (see Sects.6 and 17), written at the lower interface of the 
actual boundary layer with the sublayer. 

Below, it will be shown that the nonstationary components which are zero 
along the wall, are very small along the border of the sublayer. So long as the 
latter is of " a 1  thickness, the effect of these components can be neglected. 
The effect may also disappear at very large Reynolds numbers where the sublayer 
thickens slightly and where, simultaneously, the components in question increase 
along its boundary. 

21.7 Laminar Blasius Field; Det.erminatiTn- of the Coefficients @,, 
and 2. B 

and of the Constants - A -  

"Laminar" field: 

m 

80 

0 
5.5 = 2 fz3.3 (see Diagram I). 

,c 

0.365 0.170 0.522 0.575 0.681 0.787 0.840 0.805 I 

0 1 16 1 /'f 113 112 213 3/4 5/G 1 
= O.l(i7 = 0.25 = 0.333 = 0.5 = 0.667 = 0.750 = 0.835 

2 2.583 2.875 3.165 3.750 4.335 4.625 4.025 5.5 

- 

0.649 0.778 0.8326 0.875 0.037 0.975 0.988 0.901 1 

0.630 0.650 0.650 0.650 0.650 0.650 O.G50 O.G50 O . G 3  

0.0586 0.0576 0.1166 0.175 0.233 0.2626 0.2036 0.3S - 0 

0 0.070 0.094 0.108 0.112 0.084 0.0746 0.046 0 

r - T i  I ' I  I 1 



Hence, 

B 
A =  A I= 0,900; B 1.415; - - 1.57. 

Fig.16 (Diagram I). 

- 0.45; asymptotic "turbulent" field: For - - - - u1 

UtY uo 
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I: -.. ...... 

103. qL.. . ... 
log lo3 - C?,, . . 
103. C f -  exp . 
log 101 - exp 

-___ 

0 
G ' * " "  
*s 
UO 
uo-x y 

uo 5 

...... - 

-.- 

...... U - 
I I  

__ 
- - - - 22.2 - - 

- - - - - - 1.346 
~~~ -~ 1 .-- l_______l_ ~ _ -  :- . - 

- 5.3 3.88 3.00 2.30 1.726 1.72 

- 0.726 0.586 0.476 0.36 0.240 0.Z6 

- 

0 0.167 0.250 0.333 0.500 0.667 0.750 0.835 1 

_ -  ~~ - - 

0 0.110 0.148 0.170 0.176 0.133 0.1106 0.033 0 

N 0.450 0.450 0.450 0.450 0.450 0.450 0.450 0.4ZO 0.45C 

0 0.092 0.138 0.184 0.275 0.367 0.413 0.460 0.55C 

- 0.450 0.652 0.736 0.804 0.901 0.950 0.9736 0.993 1 

1 13 - Ol = 0.176, I<, = 1, I<, = 0.122, I<, = 0.034, I<, = - 0.007, - - 1.57 UO A =  

1 c - (D; = 0.0154 2 u,i 
- 
.k = 0.275 - O.'lOO + O.01l3 - 0.55 0.106 - 0.0154 = 0.113 

0.665 0.35 ( - e) = 0'063 0.635 . 5.5 

21.8 Diagram 11; Local Friction log F: 9 lo3  as a Function of log 3. 
. - - -. . 

Comparison of the l a w s  of theoretical and mixed origin: 
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PART I1 

NONSTA TIONABY STUDIES 



22. General Remarks /83 

The preceding expos; furnishes t h e  means, s t a r t i n g  from an abscissa xj 
where the  laminar state ceases t o  exist (whose veloci ty  d is t r ibu t ions  a r e  known 
from t h e  Blasius method), f o r  calculating a s ta t ionary  flow of t h e  boundary 
layer  with sublayer, s a t i s fy ing  hypotheses l e s s  r e s t r i c t i v e  than those by Blasius 
(variance of pressure, negligible curvature of t r a j ec to ry  of t h e  f l u i d  parti-  
c les) .  

After an extremely short t rans i t ion ,  a state of slow variat ion i s  estab- 
l i shed  where the  f r i c t i o n  depends l i t t l e  on XJ, f o r  which reason t h i s  s ta te  i s  
designated as "asymptotic solution". The f r i c t i o n  develops with t h e  Reynolds 
number i n  a manner quite close t o  t h e  experimental turbulent f r ic t ion .  

A s  indicated above, t he  presence of t he  sublayer i s  connected with strong 
ro ta t ion  components along t h e  w a l l  and with high f r ic t ion .  The configuration of 
t h e  velocity f i e l d  i s  close t o  t h a t  of t he  mean veloci ty  f i e l d s  of a turbulent 
boundary layer,  except t h a t  several  elements a r e  lacking f o r  a complete solution 
(although of only an approximate type), spec i f ica l ly  the  means f o r  determining 
the  point xj  a t  which t h i s  phenomenon starts. The previously demonstrated tran- 
s i t i o n  extends over lengths i n f i n i t e l y  shorter than those experimentally ob- 
served. Similarly, no explanation has ever been furnished f o r  the  violent ly  
nonstationary s t a t e  which led  t o  t h e  designation "turbulent flow''. 

auo - 
ax However, f o r  - = 0, nothing i n  t h e  Blasius method permits detecting a . 

cause f o r  the  change of s ta te  i n  t h e  stationary regime. 

It w i l l  be noted t h a t  t h e  Blasius hypothesis (invariance of pressure i n  the  
laminar boundary layer )  i s  compatible only with la rge  r a d i i  of curvature of t he  
p a r t i c l e  t r a j e c t o r i e s  and thus with limited i n t e n s i t i e s  of rotation. 

This s t a t e  of affairs  obviously can stop ex is t ing  i n  the  presence of a non- 
s ta t ionary  perturbation brought i n  from outside. 
t i o n  used by Schlichting i n  h i s  method of perturbations; here, t h e  results t o  
which t h i s  method might lead w i l l  be examined i n  some de ta i l .  

This returns us t o  t h e  nota- 

This represents t h e  first object of Part  I1 of t h i s  expos;. 

To f a c i l i t a t e  t h e  analysis, we first attempted t o  
Blasius solution U(Y) by an expansion i n  powers of t h e  

represent t h e  st a t ionary 
type 

1 --ai 6: I Y 
U ( Y ) = U ,  l---&&e 

[ i  

wherex  ai = 1. 
i 

The next s t ep  w a s  t o  take  a perturbation of t h e  external f i e l d  of t h e  /81 
simplest possible type which, i n  t h e  axes fixed with respect t o  t h i s  ex ter ior  
space reduces t o  a s m a l l  normal component ( in  v) harmonic, t o  x and t. 
transferred i n t o  t h e  axes fixed t o  t h e  w a l l ,  t h i s  generates a nonstationary f l o w  

When 

85 



.- .... 

with sinusoidal streamlines i n  the  f i e l d  outside t h e  boundary layers.  

It i s  then su f f i c i en t  t o  wri te  t he  Navier equations and, re taining the  
pr incipal  terms, t o  apply the  proper boundary conditions a f t e r  elimination of 
t h e  pressure, so  as t o  study the  f a t e  of t h e  perturbation within t h e  boundary 
layer.  

This more or l e s s  represents t h e  calculation method already used i n  Part  I, 

It will be shown tha t ,  beyond a c r i t i c a l  segment xc, t h e  pressure w i l l  no 
longer be invariant  i n  t h e  boundary layer. The laminar s ta te ,  based on the  in- 
variance of t he  pressure, can thus no longer subsis t  and must make room fo r  t h e  
second type of flow, studied i n  Part  I under t h e  designation of "stationary 
turbulent" flow, which i s  compatible w i t h  t h e  variance of pressure. 

In  the following Chapters, the  nature and propagation of a t a n  en t ia1  
velocity perturbation ( i n  u) a t  t he  i n t e r i o r  of t h e  boundary layer  7 laminar and 
"turbulent") w i l l  be investigated. An application of t he  r e su l t s  permits demon- 
s t r a t ing  the r e a l  t r ans i t i on  and, downstream f romth i s ,  the  existence of non- 
s ta t ionary components of permanent s ta te ,  explaining the reason f o r  ca l l ing  such 
a flow "turbulent". 
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CHAPTER Iv /85 
EFFECT OF A HARMONIC EXTERIOR PERTURBATION 

23. Introduction of a Harmonic Perturbation i n  v'; Axes Fixed i n  Space 

Let us consider axes XY fixed with respect t o  the  exter ior  space (zero mean 

i n  the s p a t i a l  mean'$ and also a re  small; t h i s  will per- 
m i t  - since v i t s e l f  i s  small - t o  neglect t he  corre- 
sponding Viscous terms i n  first analysis. 

velocity) and s ta t ionary perturbation velocity components u', v' which a r e  zero 

The Eider equations a re  wri t ten i n  the  form 

a ut a ut 1 a pt a u t  3u' 1 a p' 
ax 3Y p 3Y 11'- a x  + 0'- + -. p a s  - = 0, u ' -+u'-+---=O. 

Fig. 18 
The continuity condition will be 

a u' 3 ut =+-=0. 3 Y  

To sa t i s fy  t h i s  condition, u', v' will be derived from a stream function 
fo r  which we w i l l  use the  form $(X, Y) = cp(Y) f ( X ) :  

Fromthis, we obtain the  equations 

l a p '  
'p',. . f . ply .  /Ix - '2. yx.  ( f y ' .  f + -. __ 

P ax 0, 

Let us eliminate p' by deriving the first equation with respect t o  Y and /86 
the  second wi th  respect t o  X, and by then subtracting therefrom 

2 P'U - 9"v. f i ' x  - w,. 0.Y' + p?=Ya) fi'x -!- p # Y  (yx f a x .  + jj"x.) - 2 pp'v (f"x1 f ' x )  = 0. 

* For u' 
by assuming the space i n  question as placed between two horizontal w a l l s  over 
which regularly intercalated sources and sinks of sinusoidal i n t ens i ty  distribu- 
t i o n  a r e  dis t r ibuted (Fig.18). 

0, a scheme in v' can be conceived which would obey t h i s  definit ion,  
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I I. , . ...... , , , . . . .. . .. . 

i.e., 
f i 'x  (P'V P"v' - PPUY3) - PP'Y V x  /Ixz - //"p) 3 0. 

The integrat ion conditions read 

Thus, 

i.e., 

w e  obtain a solution sa t i s fy ing  the  above conditions. 

Similarly f o r  f ,  we have 

Log fbxz = Log f + Log y. 

f = f 0  cos u x. 
Then, 

u' = - lo yo a sin a Y .  cos u )i, 

V' = lo p0 u COS a Y - s in u X .  

The streamline i s  such tha t  

'ylx = -i U' = --tana a Y 0 cot u X. 
u a 

A par t icu lar  solution i s  any cp; = 0, cp = const ( P O ,  so t h a t  

W e  w i l l  r e s t r i c t  our study t o  t h i s  case. 

24. Axes Fixed i n  the  Plate 

t h e  axes xy, fixed with respect t o  t h e  w a l l  of t h i s  p l a t e  Fig.l9), we have 

/87 
Let us now consider a plane p l a t e  with a veloci ty  i n  t h i s  space. I n  
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- uo 
x = x-uoi,  

Y = y .  i 
v / / / / / / / / / / / / / / / / /  
0 X 

Fig.19 

The N e r  equations, written i n  the  domain exter ior  t o  t h e  boundar layer  
when reduced t o  the  pr incipal  terms (UO large with respect t o  u' and v'y, will 
yield 

For the  solution u' = 0, the  following remains 

This means t h a t  cpo and f can be a rb i t r a ry  values, without introducing any 
contradiction as t o  the  external flow. 

Consequently, an a rb i t r a ry  constant cp = 'po and 

vo/ = 9 = ~,cosa(a:-U01) 

can be taken i n t o  consideration. 

25. Introduction. o f  Dissipative. Navier Terms 

The NavierStokes equations, i n  the  axes fixed t o  the  w a l l ,  a r e  wri t ten i n  
the  form 

From th i s ,  by elimination of p, we obtain 



The solution 

Substi tuting t h i s  i n  the  general equation, we obtain the  condition 

ca 1 1'1 + uo l!z 1 + jmx21 + u, /"=a = v [C4 j + 2 C' fa. + /,,,,*], 

i .e.,  f o r  t he  t e r m  i n  f leYx, 

Consequently, t he  solut ion f i s  wri t ten i n  t h e  form 

The solution W i l l  be maintained i f  C 2  - a2 = 0, whence 

~ a ~ ~ - a a  Q = 0 and 'p = 9, eav + q a e a u  i n  real expotentiel E .  

26 Generation and Propaxation of t h e  E e r n a l  Perturbation 

Let us assume t h a t  cp has the following form: 
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where 90 i s  exclusively a function cpo(t) of time. Then, coming from cpo, 

The t e r m  'po w i l l  appear o n l ~  in the  second Navier-Stokes equation, over a con- 
t r ibu t  ion 

and 

- 9'0, 0 fh- Po /"si - uo 'po to the first' term 

- v  po/"'ta to the second. 

In  the  equation fo r  t h e  elimination of pressure, t h i s  term w i l l  correspond 
t o  

?lo, I".. + Po /"tu + uo yo Ps* = v 9 0  fl'"xt 

ca( x- u o  t )  For f = fl ,  e , we obtain 

This leaves 

-;a(= Uo t )  and the  same solution for  fzoe 
VCY2 

CY UO 
Since - i s  very smll, this means introduction of a term 'pa varying 

very slowly i n  time with respect t o  f. 

If one des i res  t o  maintain the  motion i n  cpof io, it i s  necessary - during 
each period of time d t  - t o  introduce constantly f romthe  exter ior  a component 
d q ,  equal t o  VCY2cp00e-Ya2t d t  which replaces the dissipated component. 

No matter haw t h i s  might be, propagation of t h e  component cpofio takes place 
a t  a velocity UoO 

example a t  t he  time t = 0, it w i l l  ar r ive  a t  x at  the  t i m e  t = 

s t a t e  w i l l  be characterized, with respect t o  the  i n i t i a l  state, by an attenua- 
t i o n  such that 

If t h i s  i s  generated a t  a point x ? ~  very far upstream, fo r  
x - x'.;- 

uo 
and i t s  



I I1 111 I 1  I 1  I1 

If, a t  each ins tan t  following the i n i t i a l  time t = 0, there  i s  generated i n  x3$ 
a new perturbation such tha t  

1 
Qoo (4 = so y'ooI * dl = 'p'ool f (p'ool = const ) ,  

then the  l a w  of attenuation, i n  x, w i l l  lead t o  

When t -, a, a limited stationary s t a t e  wi l l  remain i n  x, characterized by 

Thus, the introduction - i n t o  an i n i t i a l  permanent s t a t e  - of a perturbation, 
produced a t  an upstream point x" and maintained l i nea r ly  as a function of time, 
w i l l  lead - a t  a downstream point x - t o  progressive establishment of t h i s  at-  

tenuated perturbation s t a r t i ng  from a time shif ted by The permanent 

l imit ing s t a t e  toward which tends the perturbation i n  x i s  such t h a t  (Fig.X)) 

x - x3c 
uo 

For a sinusoidal perturbation i n  x'~, we W i l l  a l so  have a limit sinusoidal 
response attenuated i n  x (Fig.21). 

27. Nonstationary Perturbation In te r ior  t o  the  Boundary Layer; 
General mua- 

It i s  here a question of writing the NavierStokes equation fo r  the  varia- 

Let us take a function J ,  of the  stream re l a t ive  t o  these perturbations, 

t ions introduced by the  presence of the perturbations u', v ' ~  

having the form 

+ = 'p (Ld ' f @8 1) 4 9 (X8 1)s 
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such t ha t  

QO 
I X  ") 

9 
0 I 

-e--- - 
I / \ " " I  

I 
lor  -* 

"0 

Fig. x)  Fig. 21 

From this follow t h e  two Navier equations i n  t h e  pr incipal  terms 
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Eknumt ion  of the  pressure leads t o  . .  

The terms i n  U:, forming the product with other derivatives i n  x, can be 
neglected. 

Two different  cases will be studied here: 
1) t h a t  of t h e  laminar layer  where 

2) tha t  of t he  "stationary turbulent" layer  whose f i e l d  U(y) has been 
defined above (Part  I). 

28. Reaction of t h e  Laminar Boundary Laser t o t h e  Ha_rmo& Ek&erml 
Perturbation i n  v' 

Within the frame of the Blasius theory, no interface ex is t s  theoret ical ly  
between the laminar boundary layer  and the exter ior  f l o w  Uo. 

Compared t o  the  tangent ia l  velocity component U, as already emphasized, the 

for y = 6, 
u, - u 

term 9 
U O  

5.5 E becomes so small t h a t  the question assumes 
U O  

an en t i re ly  academic character. 

T h i s  i s  not a t  a l l  the same with respect t o  the  normal component v. 

28.1 Upper Borderof the Laminar__Bpundary Laar  

It i s  of some use t o  dwell on t h i s  item. 

A s  i s  known, the pertaining theory s t ipu la tes  first - over the approxima- 
t ions and hypotheses used - .that the  pressure be invariant in the  boundary layer. 
It then requires determination of an a F l i a r y  stream function f(1) by means of 
the well-known third-order equation ff12 + 2ft3 = 0; three boundary conditions 
a r e  connected w i t h  t h i s  which, with 

a r e  the following: 
u (0) = 0, v (0) = OD u (a) = u,. 
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W e  thus find 

yn (00) = 1, 1"n.(co) = 0 

where ffl actual ly  re joins  the  asymptote 1 for 7 = 5.5, where 1 - f{ 0.005. 

Let 70 be a value of 7 such tha t  f$ 

Let us put 

1 (for example, 70 = 5 . 5 ) -  

c'n (-4) = 1 - i'n (-4) 

where € t ( T )  i s  very small when 7 > 70. 

Since 

where f o  represents f (To) ,  AT - 10, = e(7> - €0. 
Then, the equation of t he  th i rd  order i n  Ill Hawever, f"a = -E+, f 7 3  = -e''&. 1 rl 

v o  + q - "io - + co) cRnr + 2 

t h e  domain 1 > 70 i s  wr i t ten  as 

= OD 

i.e., neglecting t h e  terms of t he  second inf ini tes imal  order, 

Emn' 1 
--a - [ Io  - "io + "i1 p 

or e l se  
1 -  

Log Cnnz (?) = -2  l(fo - q0) q + $1 + Log A. 

where A i s  a constant. 

Thus, 

so tha t  we have 

or e l se  
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whence, f inal ly ,  

To study the  development of V 2 E [If: - f l  for  7 > 70, since 
2 X 

v (0) = 0, 

we must form 

However, f + ( ? o )  > 
creases constantly with 
have 

0. Consequently, t h i s  i n t eg ra l  i s  not zero: It in- 
increasing ? so tha t ,  since V(%) > 0 i s  nonzero, we 

Although there  i s  nothing tha t  contradicts obtaining V(%) # 0, t h i s  i s  
not so fo r  V(m) # 0 which (angularly) a l t e r s  the  or ientat ion of the  veloci ty  a t  
y = my i n  contrast t o  the i n i t i a l  data (and a l t e r s  it even more than a t  7 = ?o), 

,& 

Thus, t o  avoid t h i s  contradiction, one i s  forced t o  limit the expansion of 
7 t o  a finite value 70 which, apparently, i s  arb i t ra ry  but - fo r  the  reasons 
given above - must be fixed i n  the  domain 5 < 70 < 6. (Prandtl gave a value of 
5.2 and we took 5.5.) 
tr ibuted t o  the computational uncertainties produced by the approximations used 
i n  the theory, which l a t t e r  nevertheless i s  qui te  e f f ic ien t  and f a i t h f u l  t o  
known facts ,  but can be so  on ly  under the condition t h a t  a limit 170 i s  placed on 
i ts  application domain. 

The minor discrepancies resu l t ing  from this must .be at- 

Thus, i n  the  log ica l  exploitation of t he  theory, one i s  forced t o  admit the 
existence of an effect ive border of the  laminar layer. 

This digression was jus t i f ied  since we now must invest igate  the connectivity 
conditions of appkied external perturbations as well  as the reaction of t he  
laminar boundary layer  t o  these. 

S . 2  Equations Defininp Perturbation i n  the  Laminar Layer 

Let there  be a s t a t e  of f l o w  exter ior  t o  the  laminar boundary layer  such 
tha t  U = UO = const and l e t  there  be a harmonic perturbation whose stream func- 
t i o n  i s  
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where f and 
function of 
cp = cpleay + 

g are  pulsation functions Cy with respect t o  x and Uot, while cp i s  a 
the  general form given above fo r  the  (stationary) perturbations, 
cp2e-'Y (see ~ect .25):  

f = fo  COS a Q - Id0 0, g = go cos a (;c - U, 1). 

The general conditions such as (see Sect.25) 

Y"0' (f'l + u, 1'2) + p U"2.f + u, fl'''Z?l = 0 

a re  sa t i s f ied ;  i n  particular,  we have 

a avl - a WI 

ax 7 

[i.e., cp:',f: + f:Lcp = 0 which i s  - (s - -) ax - -2 - ax = 0 and thus 

r e f l e c t s  the conservation of rotation] 

taken i n  the  form of 
A t  the  in t e r io r  of the  laminar layer, fo r  which the  Blasius l a w  dl1 be ,& 

- 

u = u o  1- y *i [ - ; .  
we obtain the following fo r  t he  fundamental equation derived by Navier (see 
sect.  27) : 

1'1 + u, j 'z = 0, 
(0'1 + u, g'=)"z' = 0. I 

L e t  us set 



I ,  ,, . ...... 

u = .u, [l - 0 (q)], u"; = - u, 0"?f - -. UO 
V X  

On the  other hand, we obtain 

whence 

Equations (A) known as "time equations" w i l l  be sa t i s f i ed  i f  the  solutions 
f and g a re  expanded i n  x - U& with respect t o  x and to  

From eqs.(B) it follows tha t  f and g w i l l  be functions of x alone ( a t  t h e  
exclusion of y), i n  agreement with the  expansion adopted fo r  t he  perturbation 
function 

(i, (4 y, 0 = y (9) * / (G f )  + !7 (G 0. 

ipp 
i n  the  s ingle  case i n  which - reduces t o  a constant r e l a t ive  t o  TI (and thus 

ip 

t o  y). This w i l l  a l so  be the  only case fo r  which the problem can be solved. 

i s  derived d i r e c t l y  from t h e  function f(7) of However, @(TI) =g &'J 
t h e  laminar Blasius f i e l d  over f.$(l) = 1 - @('TI). 
It i s  then obvious tha t ,  wi th  an expansion i n  three  terms such as 

Thus, this function i s  given. 

- - - 
a3 = ai, = ai & A ai = ai (1 & c) 

where C i s  small, it becomes possible 
t o  define t h e  development of t he  Blasius function wi th  respect t o  TI 

t o  sa t i s fy ,  t o  within terms of t he  second order i n  E', t he  condition 
(and Y) ; 

(see Appendix l), while s t i l l  closely obeying the Blasius l aw,  as in- 
dicated i n  Diagram I of Section 21.7. 

This  means t h a t  the decomposition adopted f o r  t h e  stream f'unction $ will 
furnish a very approximate (but not exact) picture  of t he  r e a l  perturbation. 
then becomes possible t o  put 

It 
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f = fCX1 + 8 1. g = gcst + 6 g. 

where 6f(x, t), 6g(x, t) are the  var ia t ions of these functions appearing between 
the  outer and inner domain a t  t he  laminar boundary layer. 

Since = i o  cos a - u o  f),  grxt = go Cos a (x  - uo 0, i t  fol lows that 

Similarly, 

Since cp i s  independent of x (and of t), it i s  necessary tha t  

i s  constant (with respect t o  x and y) or 

28.3 Solution 

The equations i n  6f  and 6g can be solved only for a calculation in steps. 

Thus, l e t  us consider the or igin xo of one of these. Let us execute the  
s tep  Ax; for the  condition i n  6 f ,  expressing the  var ia t ions of fext and the  quan- 
t i t i e s  i n  x, we have 

v .ro 

Let us put 

v xo 



I I  . 

F h i n g  the time t under consideration, we can wri te  

Substi tuting t h i s  in t he  above general equation, we obtain 

( r - a j 2 ) ( 2 ~ A ~  - u  + b) + / . [ a s i ~ a ( z o - U o l ) . ( a ~ - + ,  - uo +a1-.> 

- A  z 12 UO-4 sin a (z,,-u0 - a1 cos a (zo- U, i )  (ai - - uo + a1-p) (1 = 0, 

v xo 

V X O  5 v*o 
whence: 

- uo - u  
b (k. -a;  -) + fo a sin a (xo- U,, l) (a .  2 $-ax-.> = 0, 

v 2 0  v xo 

- uo -io I a: y . K s i n  uo a a (xo - U, l )  

UO - ax cos a (z, - U, 4 (3 + an- P) 1 = 0, 

which determines b and c (constant within one s tep  but variable from step t o  
step) 

It i s  immediately obvious tha t ,  i f  k2 = a', Lna 
- uo 
a; - 

j = -  ' lo a sin a (xo - U, 4, - u, ora - 3 
ai 

- uo a: - 

- uo as - a,! - v .To 

2 c =  ' 0  1, [s sin a (xo - U, r> - a1 cos a (.To - u,, 01. 

Finally, the solution i n  6g w i l l  be of similar appearance, characterized by 

with 
Q $ , ~  = - go a sin a (z - Uo l). 

Step by step, we then obtain 
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whence 

where b' and c' r e su l t  from t h e  general equation 

- uo 
xo 

- uo - (b' + 2 C' A x )  a + -  +go 
5 sin a (z,- U, r )  (aa + a ; - )  

- 
+ A x ! - .  a a  a s i n  a (x, - U, f) - aacosa (xo- U,r). (a% + - u  a;-'-) 11 = 0, 

Is V X O  v 4 

so  tha t  

aa + a ; -  

- uo a* _. 

CL sin a (xo - Uo [) . -- 

- u  

D 
' vs 

For 6fx and 6g:, we thus obtain the  following expressions: 

and, for  flex and dex 9 

l ' w  = - io [ a  sin a (x, - U, I)  + A x az cos K (rc, - U, 1) . . .] 
O'.rO,C = - go [ a  sin a (x, - U, 1) + A x aa cos a (x, - U, 0 . . .]. 

 ina ally, cp = cplew + cpze-ky , a s  demonstrated above. 

/100 

., 
zS.4 Boundary Conditions 

In U' = Y:f, v' = qf: - g:, t o  make the boundary conditions appear, l e t  
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us enter t he  following: 

u' (y = 0) = 0, u' (y.= 0) = 0, u' (y = 6) = deXc (6), f i n a l l y  u' (y = 6) = utexb (8) 

k (pl - v2) = 0, whencepl = 92. u' (lJ = 0) = 0 y i e l d s  d i r e c t l y  

1 
It is  possible t o  take 2 as the  common value (since cp forms a product 

1 
with f such tha t  fi- w i l l  replace f icpp l  without reducing the generali ty of the  reasoning) 2 

Then, 
Q = cash kg. ?Iu = k sinh kg. 

Here, v' E 0 yields  

U' (6) = (6) = (go + lo) [a sin a (z, - U, f) + A 2 aa cos a (x, - U, f )  . . .] 

w i l l  a lso furnish /101 

B 

By difference, we obtain 
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- ( c o d  k 6 - 1) [ b  + p (6 f J  - 6 f z )  - f o  a sin a (z, - U, 1)l 
= (f, + go) a sin a (z, - U, 1). 

- (cos l ik6- -1)~2c  + p ( 8 f l  +6 f z ) - foa2cosa( zo -UOi )1  

= (fo -k go) aa cos a (zo - U, 0, 
whence: 

Similarly, it i s  easy t o  eliminate 6 f t  for determining 6g l  and 6gz such tha t  

(6 g1 - 6 g2) - go a sin a (rzo - U, I )  

= - l b  + 9 (6 fa  - 6 fJ - /, a sin a (rc, - U, 1)] 

We then obtain 

" !7' 
"' (g) = cpsh L 6 - 

' 0  + 00 

(cos11 kr/ - 1) [a sin a($,-  U, 1)  + A 2 a2 cos a@,-  U, 1) . . .] 
(cos11 kr/ - 1) a sin a (z - U, i ) ,  - - 

cos11 k 6 - 

So far as u'(y) i s  concerned, i t s  expression reads 

u' (y) = ksinh ky [ f  (zo-U0 f) + A sf'= @,,- U, f) . . .] 
= k sinh ky . f (z - U, i), 

which can be written d i r ec t ly  since 6,' 0 re l a t ive  t o  f i  and g:: /102 

I + B  . 
cos11 k 6 - 1 

~ 1 '  (y) = - O- - 0- [COS a (z - U, f)+ const] k sinh ky. 

I n  fact ,  according t o  the  expression of v'(y) = -[cosh ky fi + g ; ] ,  we have 



and 

f (Z-U0l) =- 10 + '0 i cos a (Z - U, 1) + const. 
COS11 k 6 - 

The constant incorporates t h e  integrat ion constant s f a  of  the  integration 
of 

This wi l l  make it possible t o  sa t i s fy  any i n i t i a l  condition with respect t o  x 
concerning u' (y) . 

S . 5  Determination of k 

The constant k i s  s t i l l  indeterminate. 

Let us note tha t  t he  expressions of cp and f ,  re la t ive  t o  the domain in- 
t e r i o r  t o  the  boundary layer, a r e  as follows: 

Q = cos11 ky, 
with 

and 

However, we were forced t o  choose a value 6 for the  thickness of the laminar 

boundary layer  (6 

main of the  Blasius theory (see Sect.28.1 above). 

tha t ,  fo r  y 2 6, the  value of - calculated by t h i s  theory ju s t  about reaches 

5.5 G), fixing an extent limited t o  the  application do- 
uo 

T h i s  choice had been such 

unity. UO 

T h i s  means that ,  i n  y = 6 ,  a connection must exist between the in t e r io r  and 
the exter ior  solution and tha t  the  connectivity conditions must be sa t i s f ied  ir- 
respective of the  selected y > 6, since any other value 6' > 6 could have been 
assigned t o  6 (obviously, within the  frame of the agreed approximations), spe- 
c i f i c a l l y  in so far as the rotations a re  concerned. 

Let us return t o  the  f'undamental condition, referring t o  the exterior do- /los 
main. T h i s  condition was wri t ten i n  the form (see Sect.28.2) 



(representing t h e  law of conservation of rotat ions)  and was sa t i s f ied  for 

. 
I n  the  i n t e r i o r  domain, according t o  what has been demonstrated above, we 

have 

Let us form 

These ratios'$ will s a t i s f y  the  above connectivity condition i f  and only i f  
k" = 01'. 

This f ixes  the  value of t he  constant k. 

28.6 m r e s s i o n s  of t h e  In t e r io r  Perturbation Components 

N e x t ,  t h e  values t o  be retained for u'(y) and v'(y) can be wri t ten dawn: 

Thus, along the  border 6 a t  t he  i n t e r i o r  of t h e  boundary layer,  we have 

u sin11 a 8 
U'hL (8) = cosll a 6 - 
d i n t  (6) = (lo + go) a sin a (.z - Uo I). 

[(lo + go) COS u (Z - Uo &-const], 

Consequently, an external  perturbation i n  q e x t  = Foe-" 6-y) cos .(x - U o t ) ,  
which tends t o  zero as y + m, has the  following (exter ior)  veloci ty  components 
i n  6 :  

U'cxt (6) = - Fo u sin a (z - Uo l ) ,  

U'ex i  (6) = - K FO COS U (z - uo f), 

- 
Here, 6: has always been assumed as negl igible  compared with f:, fs. 



Connectedness of the exter ior  and i n t e r i o r  components in u' along 6, w i l l  /101s. 
be ensured i f  

sinli a 6 - a Fo COS a (x  - Uo r )  ..(io + go) G l l s 6 i  COS a (a: - Uo r). 

It follows then 

whence 
sinh a 6 

cosh a 6 - 1 
dext  (6) = Eo a s i n  a (x-Uo 1) = (lo + go) a sin a (z- Uo [)--------, 

So a s  t o  have a connectivity ex is t  between the veloci ty  components v' a t  
the exter ior  and a t  the  in t e r io r  of the  layer  along 6 ,  it i s  necessary t o  sup- 
plement the  external perturbation by a second perturbation i n  AV:~, : 

A d e x t  = do sin a (z - U, l), 

such t h a t  
sinli a 8 

0'0 + a 6 - 1 (10 + 00) = u o  + 00) 

whence 
1 + sinh a 8 - cos11 u 6 

cos11 a s - 1 
- . ___ . a (10 + '0) uto = - 

It i s  necessary t h a t  no component i n  u' be attached t o  t h i s  component i n  v i  
(meaning tha t  i t  should be of the  type investigated i n  Sect.$). 

This a lso  means t h a t  the laminar boundary layer  responds t o  such a harmonic 
perturbation i n  v;,,, (only) by an in te rna l  perturbation of the  above-defined 

type which, again a t  t he  in te r ior ,  produces the occurrence of a complementary 
external perturbation ( in  v:,, and u i x t )  which rapidly decays with increasing y 
beyond 6 ,  

29. L i m i t  t o  the Extension of the  I&@narLozmin 

Let us return t o  the  Navier-Stokes equations with perturbations u', v' cal- 
culated above fo r  the  laminar boundary layer. These equations a re  a s  follows: 
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where 

, U' = (PU - C-W) a 1. u = u o  [ 1- \l 9 

where f and g sa t i s fy  the above-mentioned general conditions. 

Thus, 

I -  

Similarly, 

-Ea+ai&]Y 
These forms cause the ocqurrence of terms i n  e 

E ' I - a i G P  - 
f e  

When y increases from 0 t o  6, the  first exponential will decrease (very 
rapidly), while t h e  second exponential which decreases i n  a similar manner a t  



I II ,.,...... .I. I I , ,..,- .,", . , .... 

aPl 
ax a Y  

same fo r  apl and - . 
29.1 Consequences 

Let xc be t h e  value of x which cancels Q' - E such that 
V X  

where ai = ai (1 - e), in p r i n c i p l 5 , i s  t he  smallest of t he  coeff ic ients  Q'i taken 
i n t o  consideration. In  fac t ,  Q'i = Q'I. 

x - xc 
xc 

Thus, a s  soon as i s  posi t ive and not extremely small, substant ia l  

(and even rapidly increasing) pressure gradients w i n  appear i n  the  thickness of 
t h e  boundary layer.  

This means tha t  t he  r a d i i  of curvature of t h e  pa r t i c l e  t r a j ec to r i e s  wi l l  
no longer be la rge  so t h a t  t he  Blasius hypothesis no longer i s  applicable. Thus, 
the  Blasius solut ion cannot extend beyond x = xc, and only t h e  second solution 
of the  Navier-Stokes equations studied i n  Part  I of t h i s  paper under the  designa- 
t i o n  of "s ta t ionary turbulent" solution w i l l  remain valid. 
pothesis has been established with respect t o  t h e  pressure gradients o r  t he  tra- 
jectory curvatures++. 

For t h i s ,  no hy- 

Thus, it i s  necessary tha t  a t  xc - or a t  l e a s t  i n  i t s  immediate v i c in i ty  - 
t he  laminar s t a t e  stops exis t ing and t h a t  a second s ta te ,  connected with it, 
takes i t s  place. 

It w i l l  be noted t h a t  t h i s  change of s t a t e  i s  correlated with the  existence 
of an external nonstationary perturbation which induces a response of the laminar 
layer  of the  same pulsation Q'; i t s  combination with t h e  Ur2 l a w  of t he  Blasius 
f i e l d  leads t o  a divergence of t h e  pressure gradients (with respect t o  y), s t a r t -  
ing  from a well-defined c r i t i c a l  segment x, which depends d i r e c t l y  on t h e  pulsa- 
t i o n  of t h e  external perturbation (and thus on i t s  wavelength or on i t s  fre- 
quency). 

Later. i n  t he  text ( i n  S e ~ t . 3 4 . 1 ) ~  we wi l l  determine t h e  response of t he  
"stationary turbulent" boundary layer  t o  the  existence of a harmonic external 
perturbation. 
out for t he  laminar boundary layer ;  no source f o r  divergence of t h e  pressure 

s't The two Navier-Stokes equations were taken i n t o  consideration, between which 
t h e  pressure i s  eliminated; thus, no hypothesis on these equations i s  formulated, 
and a l so  no hypothesis on the  smallness of t h e  t ra jec tory  curvature rad i i .  

The calculation i s  simpler than - but similar t o  - t h a t  carried 
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gradients and for a l imi ta t ion  of extension e d s t  here. 

N o  matter how t h i s  might be, the  following c r i t i c a l  Reynolds number cor- 
responds t o  xc: 

which i s  higher the  smaller CY and v and the  la rger  UO. 
i z e s  the  pulsation of t h e  external perturbation, whose frequency and wavelength 
are a s  follows: 

Here, UoQ' character- /107 

" h i s  yields  

A UO where 3~ = - thus i s  the parameter determining a,. 
V 

Here, i s  the expansion factor  representing the Blasius veloci ty  profile:  

with 

Let us define the  orders of magnitude of A (and N) t o  which various pos- 
s ib l e  values of 3, correspond, when v = 14.4 X MKS: 

ci.C 0.3 * 100 1 - 100 2.108 
. : .5.  10-3 8.2 . 10-3 11.2. 10-3 I 2.5 . 103 , N ( ~ ~ ~ )  G . G .  103 3.5 . 103 

For U, = 29 m/sec 

1.5.10-3 2.75. 10-3 3.0.10-3 

N (cps) 5s. 103 30.103 21.103. 
For U, = 87 m/sec 

The wavelengths are expressed i n  millimeters, and the frequencies in kilo- 
cycles or tens  of kilocycles. 



CHAPTER v /108 
PFDPAGATION OF A PERTURBATION I N  u', INTERIOR TO 

THE BOUNDARY LAYE3 

30. -ior &the. 

Since the  fundaplental veloci ty  
c 

Bound_ary_*. 

f i e l d  i s  of the  Blasius type, such tha t  

9 

l e t  us here consider a nonstationary perturbation stream function u', v': 

+ = P M - i (4 0 + !7 (XI 1). 

The fundamental condition is wri t ten i n  t h e  form (see Sect.27): 

'pRU' (/'a! + u 1'2) + 'p (lmz.l + u /"a!. - U"y. /la) + (g"2q + u gmz3-- g'J 

= v [/ ' p r t r t p  + 2 f"= 'pR"' + 'p /""2, + !7/"fZ,], 

and leads here t o  

and i n t o  so-called 11spacelI re la t ions  
- 

We W i l l  then re turn  t o  t h e  three-term expansion, used previously, such that 
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so tha t ,  as above, we W i l l  have t o  solve t h e  following system of equations 
(since cyi can no longer be distinguished from (Y:, we do not wish - i n  what fol- 
lows - t o  complica,te t h e  writ ing by using t h e  Vinculum cyI = ai). 

The above conditions must be resolved i n t o  conditions connected with y and 
i n t o  conditions independent of y. For t h e  time relations,  we have 

and 

For t h e  space re la t ions ,  we obtain 

and 

Since cp i s  a function of y alone, eq.(B) of t he  second order i n  ~ ( y )  w i l l  
furnish 

U j"=. - a ' l o  f l  
' v x  * 

= Aa, -_ ?nl /L  - = I - 
Q f 'z 

where k i s  a constant with respect t o  x as w e l l  as t o  y;  f o r  f ,  we then obtain 
t h e  following equation of t h e  second order i n  f;: 

31. a u d y  of First Approximation 

ht us inves t iga te  f about an  a rb i t r a ry  but par t icular ized value x = xo, 
t = to, at weak var ia t ions  Ax, A t .  

I n  this step-by-step procedure, i n  accordance with t h e  formation of k, t h e  

U 
VXO 

expression e2 = 4 0 - k" w i l l  be considered as constant i n  first approxima- 

t i o n .  The solution f l  W i l l  have t h e  form 



where f i ,  fi,  fa are functions of xo, to, and A t .  

I n  t h e  same manner, we obtain 

t- I -  

Let us go back t o  the  t h e  equation i n  g. For the  terms i n  gl, we obtain 

i.e., 

Similarly , 

and, f ina l ly ,  

Here, glo, gz0, g30 are constants so t h a t  we have 

Simultaneously, 
p = p, e'' + p4 e-k'. 

Let  us en ter  these forms i n  the  t i m e  equation ( A ) .  Since this i s  wri t ten as 
/111 

(/ q Y " 4  + 2 'pR"'y*t' + p I""..)] = 0 

I 
t h e  following r e l a t i o n  will  be attached t o  each exponential e S Y  : 
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i.e., 

so t h a t  

so t h a t  

so t h a t  

&'AI 
13 = 13. e" ei 13.) 

where fi o ,  fa,, f3, are constants with respect t o  Ax, A t  (but dependent on the 
step-by-step o r ig in  conditions, i .e ., on xo, to). 

Consequently, t h e  general expression of f W i l l  be, w i t h  



31.1 Boundary GoDditions /112 
'Here, the  boundary conditions with respect t o  y will be those referr ing t o  

the  w a l l  y = 0, f o r  which v'(0) = 0 and, i n  general, ~ ' ( 0 )  = 0. 

In y = 6,  t he  ex ter ior  flow may be affected ind i rec t ly  by perturbations 
ins ide  the  boundary layer. 
perturbation exists i n  the  exter ior  f l a w  whose boundary conditions along the  
boundary 6 ensure connectivity with t h e  in t e rna l  perturbation. 
external perturbation would vanish. 
of those studied i n  Sections 2.4, 25, and 26, i t  i s  easy t o  obtain the  means f o r  
defining such a perturbation. 
t he  conditions a t  t he  boundary of the  in t e rna l  perturbation. 

It would be suf f ic ien t  t o  es tab l i sh  simply tha t  a 

A t  y = (13, the  
On the  basis of t he  solutions of the  family 

A l l  this merely i s  t o  prove t h a t  we can disregard 

I So as t o  have u(0) be zero, l e t  us set cpl = cpz = (since cpl and cpz 

always form a product with f , the  generali ty of the solut ion i s  not impaired). 

Here, v'(0) = 0 leads t o  f i  + g: = 0. 

kt us a l so  put AX = Ax - U,At and l e t  us expand the  exponentials 

If p = i s  real ,  a l l  coeff ic ients  fi0 , fi0 , glo , g20 wil l  a l so  

be real. 
the  same f o r  f2, (and, by homogeneity, fno = fTo ) . However, i f  p i s  imaginary, then p =,,;E, fl, - - €1 

I n  expanded form, the  condition v'(0) = 0 reads as follows: 

+ t"p . This i s  
0 

If p, i s  real, it i s  necessary tha t  

If B = ZF, with being real ,  



f 

r i  .- . 

0 'm w i l l  lead t o  e = qo, F- = -gT since f and f i  are real; consequently, 

Thus, it i s  easy t o  calculate glo and g20 as soon as @; and qT are known. 

Then, t he  following e q r e s s i o n  wi l l  be obtained f o r  f :  

___. 

ucl where F = dk2 - vxo i s  a function of xo. 
fF 
f;;c 

Let us put t a n  % = 4: 

a( 3 A1 k'A1 / = 2 - ~ a - s i n ~ ~ ( A 3 : - U o A I ) - ~ ~ e  I** .+a +/*,.eu0 . 
cos 0 

Since the  o r ig in  of t i m e  i s  arbitrary, it i s  always possible t o  se l ec t  this 
origin, f o r  t he  step under consideration, such that t h e  new time w i l l  be ex- 

pressed with respect t o  the  first t i m e  by A t '  = A t  + -. - % 

Let us then put 

Hence, 

Since @ = ZF, this form i s  the  same as t h a t  referring t o  t h e  real  case @, 
except that, to each step, a pa r t i cu la r  o r ig in  of time must correspond. 



Thus, as long as a step-by-step numerical calculat ion i s  not required, we 
can use a contracted form of writing, even f o r  t h e  imaginary case B .  
have need of this i n  studying t h e  second approximation. 

We w i l l  

31.2 Prmagation 

Let us now invest igate  the  propagation conditions. 

First case: 

It is assumed t h a t  B i s  real, i.e., 

I n  tha t  case, t h e  coeff ic ient  fi, i s  connected with a perturbation whose 
veloci ty  of propagation reads 

Similarly, f o r  fi, , 

Here, Uz i s  constantly posit ive,  w h i l e  vanishes f o r  

i.e., 

Since 

where x, is  the abscissa of the  c r i t i c a l  segment defined i n  Section 29.1, it 
follows that" 

?i Let US r e c a l l  t ha t  x, = - - i s  the abscissa where the laminar Blasius 

solut ion no longer i s  applicable i f ,  i n  the  exter ior  flow,there exists a per- 
turbat ion of pulsation aUoO 
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I 

P e r l u r b a t i o n  i n  

o r  

Harmonic  p e r t u r b a t i o n  

whose roots are xl, x2 such t h a t  

s o  that 

In  this form, it appears t h a t  3 i s  d i r e c t l y  adjacent t o  (and i n f e r i o r  
X C  

2 
k2 ' X C  

t o )  - w h i l e  3 i s  d i r e c t l y  adjacent t o  zero. 

T h i s  discussion indicates that 2Il i s  

Fig 022 

> 0 f o r  x2 e x, e x,, while U, is  < 0 
f o r  x exter ior  t o  x1x2. Thus, 
f o r  0 e x < x2 and xl < x < x,, 
t he  perturbation fl i n  the  real 
exponential Will propagate q- 
stream, whereas it W i l l  propa- 
gate downstream f o r  x2 < x < 
e XI (fig.22). 

-~ Second case: 

kt k be real and fl imagi- 
nary: 

- u; u, 
4) > 2, = p .  -. V a ~ ~ - k a < o ,  

V 20 

Then, f i s  wri t ten i n  t h e  form 

Here, f,' and f are necessarily real ( jus t  as cp). 

A s  indicated above, f can always be expressed by (see Sect.31.1) /116 



Thus, f o r  x, > % ( l e t  us r e c a l l  that To cancels t h e  rad ica l ) ,  t h e  perturbation 
i s  harmonic and propagates downstream a t  a veloci ty  U,. 

Upstream of g, t h e  perturbation i s  a real exponential and propagates up- 
stream up t o  x1 which it cannot overtake (since, between x1 and x2, this per- 
turbat ion would pro agate downstream). Condensation takes place i n  x1 (which 
i s  very close t o  xo 'j . The exponential, bound t o  f l ,  reduces t o  a constant which 
can only be zero s ince  a perburbation, i n  t h e  f ini te  s ta t ionary jog, cannot be 
reconciled with t h e  Navier-Stokes equations 

It should be noted here t h a t  t h e  solut ion i n  which B is  imaginary (second 
case) induces the  appearance of a pulsat ion of a given value m c y b  (with respect 
t o  t i m e )  a t  a point x = x, such that 

where 

s o  t h a t  

Later i n  the  text, we w i l l  have t o  set x, = x, since x, i s  the  c r i t i c a l  point 
defined i n  Section 29.1 where the  laminar state i s  unable t o  e d s t  i n  t h e  
presence of an  external  perturbation of pulsat ion a ~ ,  (m = 1). 
this that t h e  perturbation which, i n  x, = x,, w i l l  have a pulsat ion maUo i s  
characterized by a constant k such thak 

It follows from - 

whence 

ka = (ma + 1) a%. 

Then, t he  point attached t o  the  pulsat ion mcvk where p becomes imaginary 
w i l l  be such t h a t  

X 
Specifically, f o r  m = 1, we obtain Po = 3 and, f o r  m = 0, Zo = x,. 

The points  x1,2 where the  velocity of propagationZi1 vanishes, w i l l  always 

2 

be given by t he  above-indicated re la t ions  so t h a t  
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32.  stugx gf t h e  SecQg-App,roximation 

The study of t h e  first approximation, 

/lL7 
where a: 3 UO had been assumed as 

constant i'n each integrat ion step, can be supplemented by t h a t  of a second ap- 

prox5mation i n  which, w h i l e  making a s tep Ax from q, t he  variation 4 - " Ax 

is taken i n t o  consideration. Appendix I11 gives t h e  corresponding developmerrts, 
indicating that t h e  propagation charac te r i s t ics  demonstrated f o r  t h e  first ap- 
proximation are encountered a l so  i n  the  second. 
terms of the  second approximation can be neglected f o r  those of t he  first ap- 
proxination e 

vxz 

Finally, t he  complementary 

The above study, described i n  Section 31.1, led t o  a solution i n  which t h e  
function f(x,  t )  of t h e  perturbation stream function was expanded i n  narrow 
domains Ax, about each segment x,, i n  the form of 

/ (XO + A xo) = 2%, s i n  [ p ( x o )  (A xo - U, lo) - Q] + fa,, 

/'z ($0 A ZO) s 2 f,, (TO) COS [p (xO) (A X, - Uo lo) - Q]. 

where to i s  some determined ins tan t :  

[since 5 i s  defined by F(x) = 01. 

i n  question; Rowever, they develop slowly .from domain t o  domain about x,, 
xl, ..., etc .  
t emined  at least approximately. 

- 
Here, fl , f3, and thus a l s o  '3 are constants i n  the  small narrow domain Ax, 

Consequerrtly, these are unknown functions of x which m u s t  be de- 

For this, we W i l l  s t i p u l a t e  that corrtinuity of f ( x )  and of i t s  derivative 
exist when passing from one domain t o  t h e  other, after w@ch we W i l l  a t t e q t  t o  
carry out an approximate integrat ion by p a r t s  of t he  problem. 

Thus, by s e t t i n g  x, i- Ax, = xl, t h e  above-mentioned solution W i l l  be 
ident i f ied  with t h e  solut ion of the same form wr i t t en  i n  x1 (where Axl = 0) but 
f o r  which - 

f l  = 71 (xo) + 7lx (%) * A 4 



whence 

The second equation is satisfied i f  we have 
- -  - 

TI* I Fo + p'o, / l o  = 0 and P o  +-Po, uo G + @lo, = 4 

whence 

i.e., 

Hence, we a l so  obtain 

i .e., 

-x It Will be noted 

s i n  [Fo(-uot,) - 
same holds f o r  COS.  

120 

._-- .,, . ... , , , 



To exploit  t h e  first equation, it should be mentioned ' that  it i s  always 
possible t o  m a k e  a choice of a time o r ig in  or - which comes t o  the  same - of a 
time to such that 

0 0  + F o  * (U, 10) = 0. 

It i s  noted first tha t ,  i n  t h e  step x1 - x, where f;, 

i s  a constarrt. 
f(*, to) = fs by t h e  nomtationary term 

= 0, t h e  quantity fi /119 
X 

I n  addition, at some time t, t h e  term f(xo, t )  w i l l  differ from 

- 27, (xo) sin m &o> uo 71 

when se t t i ng  T = t - to. 
l y  about f(x,, to). 
average is  involved here. 

ever, t o  demonstrate t he  mean value f,(x, 7 , it i s  necessary t o  se lec t  a new 
t i m e  tl such t h a t  - as before - 

Here it is  a question of a term osc i l l a t ing  harmonical- 
We Will denote f(xo, to) by f,(xo) t o  indicate that a t i m e  

W e  can repeat t h e  preceding reasoni , s t a r t i n g  from t h e  point xl. How- 

0 (23 + p (zJ . u, 1, = 0. 

To pass from f, (xg) t o  f, (xl) ,  it i s  thus necessary t o  ca lcu la te  - s t a r t i ng  with 
t h e  t i m e  to - a first var ia t ion of f ( k ,  to) with A% = xl - k, namely 

We should note here t h a t  
- 
P (z3 (- uo f, = + 0 (4 

and 

Thus, t o  obtain f, (xl), it i s  necessary t o  increase f, (xg ) by 

- 
On replacing 2f, (x) B(x) by i ts  value of 



2 c  - k  px 1--= 2c, 

we obtain, from x, t o  xl, 

Similarly, from x1 t o  x2, 

and so on. 

term-by-term addition, we Will obtain the var ia t ion of t he  t i m e  average 
from xo t o  x, namely 

If, f o r  t he  or ig in  segment q, we se lec t  t he  segment E such that E(%) = 0, 
where we necessarily have f (x )  0 (no 
t i o n  superimposed on the  laminar f i e l d  

constant and finite perturba- 
, we f i n a l l y  obtain 

where To represerrts t he  time such tha t  

Since 
Pr ,- 

f, (x) wil l  be given by 

f 4 
I 122 ," 

1 

If' the  value of f,(x) i s  imposed i n  a segment %, then t h e  constant C will 
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r e su l t  and one can simply calculate, i n  each segment x, x x < x,, a function 

p (e) such t h a t  

4:) = 

The accompanying table gives an example of the  development of 1-1 f o r  x = &l 
= 0.55 x,. 

2 - 
X C  

- 
2 

X - -  
XC 

.. .~ . . . . ~. ~- ~. . - ~- 

0.55 0.60 0.70 0.90 1 -. 
- . . . -  .. .. . 

0 0.050 0.150 0.350 0.450 

0 0.025 0.055 0.105 0.125 

0 0.20 0.44 0.86 1 

The expression f o r  t h e  nonstationary component w i l l .  be 

using t h e  notation T defined at the  beginning of this Section. 

34.  - Pgrtwga&- i n  u’-Interior 20 the  ~YL’urbulentII 
Boundary Iayer 

We will l i m i t  t h e  invest igat ion of this case t o  the  first approximation 
of f .  
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The fundamental condition (derived by Navier, see Sect.27) 

vn.= 01 + U1'3 + Q (/"zs + i'z3 U) + (g'"zY + Ug"z*) - u n y z  ('p I t+  + g'z) 

= v [/ Q l ~ ~ ~ y 4  + 2 ( P n u z r u z  + Q /"",4 + g,l,'4 

u, - x 
5 

y + X + u(y) w i l l  become, i n  this case, neglecting u(y) which where U 

i s  small with respect t o  the  other terms and observing t h a t  X = const, 

Separating the  independent terms of y from those containing this quantity /122 
as factor ,  we obtain 

which i s  the  time equation, as wel l  as  

Q n ~ z r z  + f'za + !j"t3 = 0, 

which i s  t h e  space equation. 

Frm the space equation, since cp i s  independent of x, we can derive 

i .e., 

Finally,  

whence 

gmx. = 0, 

i 

I 



Here, the  integrat ion i s  carried out d i r ec t ly  ra ther  than .by par t s .  

L e t  us now return ~o t he  time equation. 

order such that cpleky  + cpzemky can be factorized. 
follows tha t  

The derivatives of cp are of even 

For the  term i n  etkx, it 

/ ' I l  (ka - k') = v [k' - 2 ka - ka + k4] 

i.e., 0 = 0 which means tha t  f,"(t), f l ( t )  can be arbitrary quantit ies.  

same holds f o r  f i  , f,(t) with respect t o  e-zkx. 

The 

t 

[Naturally, this i s  t rue  only within the  frame of t h e  admitted a p p r o h a -  
t ion,  with u(y) bei 
superimposed on fl 
velop only slowly. 1 

small. However, it follows from this tha t  the  conditions 
, fz (t) are very weak and that these quantit ies w i l l  de- 

Thus i f ,  i n  an a rb i t ra ry  segment x,, the  quantit ies fi and fi obey cer ta in  
l a w s  with respect t o  t i m e ,  these l a w s  w i l l  be conservative t o  values of x > x, 
r e l a t ive  t o  the  Ifturbulent11 layer. 

It i s  a l so  necessary t o  allow f o r  

The second equation yields  

BR21 = Bo (4 

where go i s  constant with respect t o  x. 

From the  first equation we then obtain 

fJlO' = 0. 

Thus, go i s  a constant and g: = &ox + g l ( t ) .  
spect t o  y w i l l  always be those concerning the  w a l l  

The boundary conditions with re- 

u' (0) = 0, 

i.e., 
and u' (0) = 0. 'fa = 91 5 

If several perturbations k are present, t he  condition v'(0) = 0 wi l l  lead t o  



(since fa = fl so that v' can be real). 

34.1 Reaction of t h e  Vurbulent1t k y e r  t o  a_n l$iposed 
Wernal Perturbation ( i n  v') 

It W i l l  be noted that t h e  above expressions of v', u' are applicable t o  the  
perturbation inside the  IIstatAonary turbulenttt  l ayer  which forms i n  response t o  
an imposed external perturbation vJ s i n  CY (x - U,t) of the  type studied i n  the  
preceding Chapter (Sect .28). 

However, the  boundary conditions referr ing t o  this case must first be 
f ormukt ed . 

Primarily, so  that u'vl be real, it i s  necessary tha t  fl = fi, %.e., 

U' = - [- 2 k f ,  sin kx cosh ky + go x + gJ, u' = 2 f ,  cos kx k sinh ky, 

where u'(0) = 0 i s  thus sa t i s f ied .  Here, v'(0) = 0 imposes 

- 2 kf, sin kx 4- go X f gl = 0. 

Consequently, we obtain 

u' (6) = 2 f ,  cos kz 9 k sinh k 6 = 2 f l ,  cos k (x  - U, x )  k sinli k 6, 

u' (6) = - [- 2 k/,sinkz - cosh k 6 + g,x + g,] = 2 k f l  sin k (2-U, 1) (cosh k 6 - 1). 

For the  connectivity along y = 6,  a t  an external perturbation of the  m 
general type (see Sect.25, 26, 28) such as 

u',,~ = - a F, e 4 v - S )  cos a (5 - U, i), 
u',,~ = - F, ea(u-8)  a sin a ( x  - U, i )  + do sin a ( X  - U0 i ) ,  

it is necessary tha t  

k = a, r;, - 2 = - -_ sinh k 6 

whence 

so  that 

aF - u '  sinh a 6 
O - O 1 - (cos11 a 6 - sinh a 6)' 

1 2 flea = u' 0 * cosh a 6 - sinh a 6 - 1 * 

3 
' 'I 



As i n  t he  case of a Iaminar boundary layer, t he  reaction of the  %urbdent"  
layer W i l l  include the  appearance of a harmonic in t e rna l  perturbation and that 
of a secondary external perturbation (tending rapidly t o  zero f o r  y increasing 
beyond 6) .  

However, no limiting condition occurs here t h a t  might lead t o  impossibili- 
ties o r  contradictions with the  approximations established on the basis of the  
calculation, i.e., t o  a l imitat ion of t he  extent of the obtained solution. (No 
l imiting hypothesis as t o  pressure. 
nent flow are very weak and do not lead t o  exponentials that diverge from Y.) 

I n  addition, the  terms i n  U;. of the perma- 
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CHAPTER V I  /125 
APPUCATION TO THE CONNECTION BETWEETJ TURBUL;ENT AND 

LAMINAR STATES; TRANSITION 

35. General Remarks 

We W i l l  attempt here t o  make use of t h e  above-obtained r e s u l t s  f o r  defining 
t h e  phenomena connected with t h e  f a c t  t h a t  t h e  laminar state stops being possible 
s t a r t i ng  from a c r i t i c a l  segment x,, as soon as a source of perturbations exists 
i n  the  ambient medium. 

Let us r e c a l l  t h a t  x, had been defined by t h e  investigations i n  Chapter IV 

It was demonstrated there  
(Sect .29) concerning t h e  act ion of an external harmonic perturbation applied i n  
v', with a pulsation of a U ,  (with respect t o  time). 
that this perturbation caused the  appearance, i n  the  laminar boundary layer, of 
a corresponding perturbation i n  v' (and i n  ro ta t ions  w ' )  which was harmonic and 

had a pulsat ion of aU, and t h a t ,  i n  x, = 

charac te r i s t ic  f o r  t he  laminar state  no longer was able t o  exist. 

Q? 3, t he  invariance of pressure 
V (y2 

T h i s  property i s  responsible f o r  the  f a c t  t h a t  t he  laminar Blasius state 
can no longer be maintained and t h a t  it becomes necessary t o  pass t o  a d i f fe ren t  
state consti tuting a second solution of t he  Navier-Stokes equations which had 
been derived i n  Part  I under t h e  designation of Itstationary turbulent11 state, 
indicating there  t h a t  t he  de f in i t i on  of a t i m e  average was involved. 

The lIturbulent1l s t a t e  i n  question which must be acquired i n  an abscissa 
(x, + 6x,) extremely close t o  x, (as demonstrated before), thus appears as a 
state perturbed with respect t o  the  laminar state i n  the  same segment, meaning 
t h a t  passage from the  laminar t o  the  llturbulentll s tate takes place over consid- 
erat ion of a f ie ld  perturbation u' supplementary t o  t h e  perturbation i n  v' which 
had given r i s e  t o  the  phenomenon i n  question. 
designated as second perturbation u i I ,  a subject which w i l l  be studied i n  some- 
what more d e t a i l .  

Thus, this a l t e r a t i o n  Will be 

36. Definition of t h e  Family of Pertur- 
Connectivity between the  States 

To have the  Blasius f ie ld  U(y) give way t o  t h e  llstationary turbulent11 field 
defined above, it i s  necessary t h a t  a family of perturbations u', of t he  type 
described i n  Chapter V, becomes superposed i n  the  segment x, + 6x, such t h a t  
t h e i r  cumulative t i m e  averages w i l l  make up t he  difference existing between the  
two f i e l d s  (U, - U,) a t  each l e v e l  y (Fig.23). /126 

Each elementary perturbation i s  characterized by i ts  constant such t h a t  (see 
Chapt.V, Sects.31.1 and 34) 



I 

t h e  laminar state would have t o  be re- 
placed by the  l%urbulent state", which 
i s  contrary t o  t h e  hypothesis estab- 
lished. Thus, t h e  maximum value which 
B, can assume i n  x, i s  CY, so t h a t  

We have demonstrated before-that only  t he  harmonic perturbations can remain 
f ini te  since t h e  pulsations are BU,, where 

\ "r - u L  

Fig 0 23 

The minimal value t o  be considered - 
f o r  &, i s  p, = 0, corresponding t o  t h e  case i n  which the  perturbation ceases 
being harmonic i n  xc. 

Consequently, m 
kil - U: 2 2 0  or k& 2 aa. 

v xc 

Between these limits, a l l  values are possible, i.e., values such as 

I n  an  a rb i t r a ry  x, we have x < x ,: 
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- 
Here, X = x corresponds t o  B, = 0 such that 

- 
Again, x = x', corresponds' t o  B, = CY, such that 

Consequently, 

If m > 1, we have 

On t h e  other hand, 

2 

i.e., 

but 

so  t h a t  

z 1  
XC 
- <2.  

If m < 1, w e  have 
- 
2 

and - (1, x'c - - > I  
2, f 

- 
X - 
4 -1- > I, 
- 
2 

x c  2 < x < XC < x'c. 

So far as t h e  development of pulsations with x is  concerned, these cases 
are shown i n  the  accompanying diagrams (Figs.& and 25): 

- 
P = m a ,  m < l ,  

P = m a ,  m > l .  
- 

The la t te r  case is  impossible f o r  t he  above-indicated reasons; consequently, 
no component uila can exist for which m > 1 since this would r e su l t  i n  xi < x,; 
t h e  c r i t i c a l  point x', where t h e  state would necessarily stop being laminar under 
t h e  act ion of t h e  perturbation applied from the  ex te r io r  at a pulsation CYU, would 
be upstream of t h e  point x,, which i s  i n  contradiction with t h e  s t ipu la ted  c o d -  
t ions .  
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- 0 5, x x, = x; 
2 

Fig.26 Fig 27 

itions whose Limiting states Conversely, 0 s m < 1 represents possible evol 
are shown i n  the  accompanying diagrams (Figs.26 and 27). 

Thus, t he  component of t h e  second perturbation u{, , which furnishes a 
response of pulsat ion maU, (m < 1) i n  x,, i s  generated at a point x downstream 

, t he  point where a response of pulsationaU, in x, i s  generated. of 

quently, t h e  general expression of the  second perturbation has the  form 

/129 

Conse- X C  

-2 

m - 0  

where the  laminar existence domain i s  5 <x<x,. 
2 

37. Bopndary - Conditions 

Here, we have t o  do with the  par t icu lar  form of t h e  connectivity f i e l d  
(UT - U,) i n  t he  segment x, which tends t o  zero as Y -..t 5 + F and which contains 
a discontinuity at the border F of t he  sublayer. 

A t  the  w a l l ,  it is  necessary tha t  uir  = 0 which leads t o  se t t ing  cpl, = cpz, 
i n  t he  per turbat ion expression (see Sect 31) 

Consequently, an expansion i n  sinh k,Y i n  the  thickness of t h e  subhyer  (0 < 
<. Y < G) m u s t  be used. 



Since this thickness i s  very s l igh t ,  it i s  possible t o  l i m i t  t h e  expansion 
t o  terms linear i n  Y by se t t ing  s inh & Y  s k,Y such that ,  a t  the in te r face  
between sublayer and ac tua l  boundary layer, we obtain 

Above this interface (7 < Y C e + r, i.e., 0 < y < 5) a new perturbation 
must be considered, which satisfies the  above-investigated conditions i n  u' 

( spe t i f ica l ly ,  t he  Navier conditions) having a l l  propert ies  s t ipulated above and 
thus being of t h e  form 

11'11 = 1: km ( 'pI, ekmy - 9% e-kmy)  f m  (x, 0. 
m 

Consecpently, t h e  terms k, and f, are the  same as those given above, /130 
except t h a t  t he  boundary layers with respect t o  y now are as follows: 

For Y -, 5 + E, t he  quantity uf r  w i l l  tend t o  zero (no matter what x and t 
might be). 
(since this forms a product with f,, nothing w i l l  be changed i n  the  generali ty 
of t he  solution).  Hence, 

Consequently, it i s  necessary that cpl = 0 and we w i l l  set 'pz = 1 

-k,,,\' 
ktn e f m  (x. 0. 

m 

For Y = E, t h e  quantity u f I  should be linked with u i IE  of the  sublayer. 
T h i s  fac t ,  as w i l l  be demonstrated below, makes it possible t o  determine the  
thickness of the  sublayer i n  each segment x(x C x,). 

These observations imply: 
1) For x = x,, the  quantity u &  i s  such that ,  at the t i m e  average and a t  

each l eve l  y, it w i l l  represent t he  deviation of t he  Blasius ( W n a r )  
f i e l d  U,(y) from t he  Ilstationary turbulent" f i e l d  UT (y), as defined 
i n  P a r t  I. 

2)  For x = Zg, t he  corresponding component of ult i n  m w i l l  vanish. 

37.1 Equations Defining t h e  Formation of Perturbations uil 

The complete expression of u f I ,  allowing f o r  t he  boundary conditions with 
respect t o  y and a l so  considering the  expression of f, (x), wi l l  be as follows i n  
the  ac tua l  boundary layer : 

U 
We must express now tha t  the  connectivity i n  x, i s  such tha t ,  a t  t h e  t i m e  

average, we have 
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[u';:']meul='lur - U'I, a t  each l e v e l  

i.e., 

T h i s  represents an equation where the  terms [f, (x,) I,, a n  w i l l  be unknowns. 

T h i s  can be wri t ten with a continuous var ia t ion of m such tha t  0 C m < 1: 

Its solution is performed by a f i n i t e  difference method, which makes it /131 
necessary t o  set 

i n = n . 8 r n ,  

I I m z  1 
XC where 6m i s  a unitary var ia t ion and n 

i s  the rank of this variation. 0 $:Y, 

I I 
1 - m ~ 0 . 6 7  We W i l l  take 0 < n <  N where N 

corresponds t o  0 - x c  xo.67 X C  

2 

1 - - I m ~0.33 N . 6 m  = 1 
0 - x c  XQ.3.3 x c  

(so t h a t  0 < m c 1). Here, N i s  arbi- 
0 I-, - x c  xc = x. :4 t r a r y  but i s  taken suf f ic ien t ly  large 

2 

Fig .28 

1 
N so t h a t  6m = - Will be suf f ic ien t ly  

low. 

A t  each l eve l  yi, the  above equa- 
t i o n  yields  

T h i s  i s  an equation of ( N  + 1) unknowns f ( 0 )  (x,), f ( l )  (x,) ... f( ,)  (x,), ... 
Repeating this equation f o r  N + 1 levels  yi , we wi l l  obtain a Cramer 

The previously given relat ions defining f, (x) = pf, (x,) (Chapt.V, Sect.33) 

f( N) (x,). 
system defining the  unknowns. 

that specify t h e i r  evolution with x can then be applied t o  each subscript (n), 



x, 
2 from which the  perturbation u f I  w i l l  be known (at  each value of x for - e x < 

x, and at each level y) as a mean component and as a harmonic component. 
w i l l  be noted that, as a function of m = n6m, the  domain of extent of each ele- 
mentary perturbation m win differ from that of i ts  neighbors and tha t  t he  
quantit ies fc m) (x) W i l l  have evolution diagrams of t h e  type given i n  F'ig.28. 

It 

-.-- c- 

___ /* 

5L 

C 

A t  each point zo = x, -, t h e  perturbation starts with a zero pulsa- /132 
1 + m2 

However, the  notion of laminar 
boundary S,, as mentioned previously, i s  

which the  Blasius function U,(y) i s  cor+ 
tinuous a t  0 < y < co (which is  a l so  t rue  
f o r  the adopted image function). 

not specified by the  laminar theory f o r  

% 

The re la t ions  used above for de- 

t i o n  
w i l l  

ture 

value and a zero time average. 
reach a value of aU0m at  x = x, . These increase with x, and the  pulsat ion 

For x > x,, where the  turbulent state i s  de f in i t e1  established, t he  struc- 
(time average, nonstationary elongation, frequency5 wil l  remain prac t ica l ly  

invariant as demonstrated i n  Chapter V (Sect.34), under the  condition that, i n  
each segment x, the level y(x) corresponding t o  the  l eve l  y(x,) of t he  c r i t i c a l  
segment i s  taken i n t o  consideration i n  accordance with the  re la t ion  

T h i s  results from the  boundary conditions (with respect t o  y) t o  be sa t i s f ied ,  
of the  form given i n  Section 34. 

Consequently, f o r  studying the  
perturbation u i I ,  it i s  unnecessary t o  dis t inguish between domains where y < 
< tjL and y > 6,. It i s  cer ta in  tha t  i f  - with the  a id  of a given c r i t e r ion  - 

I! (+), then an application of t h e  a value for x = 2 can be assigned t o  S, X 

2 
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same c r i t e r i o n  Will furnish, i n  t h e  t rans i t ion ,  a continuous border l i n e  con- 

nected t o  6, (x,) i n  x, (since a l l  functions fSom are continuous between 

and x,, are zero i n  L, and are such t h a t  connectedness exists between the  

mean of uir and U, - U, i n  x, )*. 

/133 
X 

2 
X 

2 

39 Q)Ba&n of Tramition: 4s2_erimsntal_Comparison 

According t o  the  above analysis, t he  necessary passage t o  the s ta t ionary  

uo (under the  influence - 2 
CY2 v 

turbulent state i n  t h e  c r i t i c a l  segment x, = 

of an  external perturbation i n  v' of pulsation @U0) takes place as a consequence 
of t h e  continuous formation of a s e r i e s  of secondary harmonic perturbations i n  

X 
a t  the  i n t e r i o r  of t h e  boundary layer  along t h e  segment 2 2 9 X C .  

Their frequency i s  of t he  increasing type, a t ta in ing  i t s  max imum a t  x, 
which corresponds t o  a pulsat ion aU0. 

These secondary perturbations contain a nonzero time average (connected, 
a t  each l e v e l  y, t o  U, - U, i n  x,) as w e l l  as calculable nonstationary com- 
ponents which remain ac t ive  beyond x,, i.e., i n  t he  turbulent domain. 

Because of this fac t ,  it w a s  possible t o  define a domain of t r ans i t i on  

X C  

2 
extending, f o r  t he  case of a plane p l a t e ,  from - t o  x, as w e l l  as a turbulent 

state which j u s t i f i e s  re ta in ing  i t s  designation (permanence of a nonstationary 
s t a t e ) .  

It Will be found t h a t  t h e  extremely simple r e su l t  obtained i n  this manner 
[ t rans i t ion  zone c q r i s e d  between 

can be ver i f ied  by p r a c t i c a l  experiments of measuring t h e  f r i c t i o n  coefficient - because of t h e  f a c t  that turbulent f r i c t i o n  i s  much higher than laminar f r i c -  
t ion .  
crease of t h e  coefficient of f r i c t i o n .  

* We already mentioned (Chapt .IV, Sect.28) t ha t ,  f o r  t h e  normal component V, , 
t h e  problem presents itself i n  a d i f f e ren t  manner because of t h e  fact t h a t  t h e  
function V, of t h e  Blasius theory leads t o  an anomaly f o r  y -, -. Thus, when- 
ever it i s  a question of making a study of V, it i s  necessary t o i m p l i c i t l y i n -  
troduce a limit 6,. . 
t i o n  i s  unnecessary. 

Thus, t h e  t r a n s i t i o n  zone i s  characterized by t he  zone of abrupt in- 

For a study of U,, as it i s  i n  question here, this res t r ic -  

13 5 



F'ig.30 (Diagram III) . 

The experiments by Guienne (Ref.3, 

We w i l l  list here the  early r e s u l t s  
of experiments made by Guienne (Ref .3) 
at t h e  I.M.F.L. 

roducing t h e  per- 
ta ining diagrams ; Diagram 111, 
Fig 3 0  

It seems that t h e  agreement with 
the  theo re t i ca l  r e s u l t  mentioned above 
i s  of spec ia l  i n t e r e s t ,  since the 
measurements w e r e  made on average states 
but are always somewhat in te r fe red  with 
and are rendered less accurate by t h e  
presence of subjacent nonstationary /134. 
components. 
s l i g h t  deviation of the  asympLotic 
( loca l )  t heo re t i ca l  curve of $ from the  
KQrm6n curve; f i na l ly ,  ,as previously 
stated,  t h e  quantity c'fc of t h e  end of 
t r a n s i t i o n  more o r  l e s s  coincides with 
the  asymptotic quantity (see Sect. 
s ec t  21.3). 

The diagram a l so  shows the  

39.1 Diagram I11 

The l o c a l  f r i c t i o n  coefficient 
C:(% ) i s  given i n  Fig.30. 

p.13, Fig.") are given here. 

The comparison with the  theory covers,,the fonowi,ng: 
1) t h e  asymptotic ( loca l )  curves (7; and the  K a d n  curves; 
2) t he  term f: of t h e  end of t r a n s i t i o n  coinciding with the  asymptotic 

3) t h e  t r a n s i t i o n  extending from - W t o  W . 2 
; 1 

40. Recapitulation of t h e  Transition Calculations /135 
Let  us assume t h a t  t h e  value s6 of t h e  thickness of t he  ac tua l  boundary 

layer i n  x, i s  known, which i s  the  segment where t h e  l%urbulent~l state i s  neces- 
sari ly established. 

I n  this case, t he  f i e l d  [U,(y)lx, i s  defined together with the  velocity 

gradient at  t h e  w a l l  [(+)O]xc*. T h i s  makes t h e  following possible: 

x- For footnote see following page. 
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1) Establish t h e  l a w  [U,(y) - UL(y)lXc and solve the  system of equations of 
unknown quantit ies 4,) (x,) where 0 < m 5 1 (see Sect.37), f i na l ly  formulating 

by calculating each function 

X, 
2 

t he  l a w s  of developmerrt of each quantity f,(x) with x varying from - t o  x,, 

(see Sects.33 and 35, giving the  calculation of the  perturbation system generated 

from X t o  x, by the  functional r e l a t ion  wr i t ten  i n  x, 
2 

m-0 

X C  

2 
2) Calculate, i n  each segment x where - < x < x, and a t  each l eve l  y, 

the  mean component of 

where 

3) Determine the  veloci ty  gradient at  t he  w a l l ,  resul t ing from the  same 
process : 

I n  this manner, the  loca l  f r i c t i o n  coeff ic ient  W i l l  be fixed i n  each /136 
segment : 

The t o t a l  f r i c t i o n  coeff ic ient  i s  readi ly  deduced from this by 

* Taking in to  consideration tha t  t he  loca l  f r i c t i o n  coeff ic ient  at  xc i s  known: 



Since, i f  t h e  f i e l d  i s  1%urbulentll which i s  t h e  case i n  x = x, 
- 
5 c/ (z) = 2 x . - - 

X ’  

t h e  thickness of t he  turbulent layer Will  be such t h a t  

5, - 
4 c  = - c/ (z,). 2x 

40.1 Calculation Procedure 

The procedure-can then be t h e  following: To start the  calculation, a pr+ 
vis ional  value of 5, i s  assigned with which a l l  of t h e  above-defined operations 

are performed after which 5 ,  -% C,(x,) i s  calculated. If there  i s  a difference 
2 6  

from the  i n i t i a l l y  adopted value, t he  lat ter is  corrected by half t he  difference 
and t h e  calculation i s  resumed, and so  on. 

I n  fac t ,  when making t he  numerical application, it W i l l  be found t h a t  only 
t h e  very first terms f,(x,) (those i n  which m i s  close t o  unity and f o r  which 

.., xc X C  x, = -) W i l l  be notable and that only three of these terms f o r  XI = - 
2 2 ’  - x2 = 0.55 x,, z3 = 0.60 x, are necessary f o r  completely taking care of t he  l a w  

[U,(y) - U,(y)lx,, irrespectiveiy of t h e  value of x,. 

Condensation of t h e  domain of t, i n  which t h e  elements composing t h e  

perturbation about 5 originate, then makes it possible - f o r  calculating t h e  

development of AU(y, x) and [(l) ] - t o  use only one evolution l a w  p 

corresponding t o  

table giving this l a w .  

2 

Y o x  ( xc 1 
0.55 x, [denoted by po (*)I; see Section 33 and the  

Since t h e  l o c a l  f r i c t i o n  coefficient a t  x = x, where the  flow i s  f u l l y  /137 
I%urbulentll i s  @ = I? i.e., i s  sensibly t h e  same as t h a t  of the  asymptotic 

C fc ’ 

x- See Section 40.6, Diagram V, which 
curves AU(Y) with three coef f ic ien ts  

138 
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shows t h e  agreement of t he  imposed and image 
corresponding t o  Zl, Xz, % 



solut ion (see sec t  .21.3), it 

f r i c t i o n  coeff ic ient  between 

proportional t o  the  velocity 

i s  easy t o  define the  development of t he  loca l  

- X C  and x,. 

gradient U a t  t he  w a l l ,  we have 

I n  fac t ,  since the  loca l  f r i c t i o n  is 
2 

Knowing t he  loca l  f r i c t i o n  a t  each point x, t h e  t o t a l  f r i c t i o n  can be de- 
duced from this as deponstrated above, permitting a determination of Cf  (% ). 
Application of t he  r e l a t ion  of t he  turbulent state 

W i l l  thus yield directly'' 

The calculat ion can be continued u n t i l  the  development of t h e  velocity 

f i e l d  U(y) from 5 t o  x, i s  determined, as indicated a t  t he  beginning of this 
Section. 2 

40.2 Decomposi&ion o f e  EaLhematical Operations 
~~ f o r  t h e  ~ Transit ion 

The operations are as follows: 

1) E x a t i o n  of the  c r i t i c a l  Reynolds number W(x,) = $3, as a function of the  
pulsat ion CY and of t he  wavelength h of the  external  perturbation: 

(where cyI 2 0.375 i s  the constant of t h e  Blasius f i e l d ) .  

2) Calculation, i n  the laminar regime, of the  boundary layer  thicknesses of 

the Blasius veloci ty  f i e l d s  at  the  points  xi 2 < xi < x,) retained f o r  t he  

calculation, followed by calculation of t he  coeff ic ients  of f r i c t i o n  
(2 

- - 

~~ 

35 Here, C,(x,) obv%ously is  lower than the  asyaptotic f r i c t i o n  (corresponding 
t o  a ltturbulenttt boundary layer  s ta r t ing  from x 2 0). 
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I 

3) Determination of t h e  character is t ics  of ttturbulenttI flow i n  t h e  seg- /138 
ment x, 

a) Determination of t he  l o c a l  (asymptotic) f r i c t i o n  coefficient:  

X and determination of t h e  development of l o c a l  f r i c t i o n  between 2 and x,: 
2 

Calculation of t he  l a w  of evolution of t h e  t o t a l  f r i c t ion :  

and, specif ical ly ,  of E ,  (x,) . 
Hence, 

2, - = - Ci (Zc) with 2 = 0.226, 2 x  
i.e., 

X b) Determination of t he  velocity f i e l d  at x = x, with - = 0.45: 
UO 

1 (where - Q, are t h e  values calculated at the  end of Sect.6.2). 

resul t ing from the  value of i f$ (x , ) :  

UO 

The same holds f o r  t he  determination of t h e  velocity gradient at the  w a l l ,  

with, f o r  the  laminar state, 



Formation of t h e  quantities: 

1R . 10-8.. ........... 
log1S ............... 
Laminar CI,. 103. ... 

Tu rl, ulen t " 
, asymptotic CI 103.. . - 

4)  Application, i n  each segment xi, - X C  e xi < x,, of the  following 
formulas : 2 

and 

f o r  t h e  p l o t  of t h e  f i e l d s  sought. 

Below, we are giving tables and diagrams of t h e  elements, t o  f a c i l i t a t e  t h e  
numerical applications. 

t o t a l  (and loca l )  f r i c t i o n ,  f o r  values of 
r e l a t ive  to the  t r ans i t i on .  

These diagrams refer t o  t h e  calculation of t he  l a w s  of evolution of t h e  
1 x lo", 2 x 18 and 3 X 10" 

The results are given i n  Diagrams IV of Section 40.5. 

The r e su l t  referr ing t o  t h e  t o t a l  f r i c t i o n  incorporates t he  asymptotic l a w  
and t h e  experimental points  of Wiesekberger, Gebers, and Kempf (ex t rac ts  from 
Prandtl, loc. c i t  .). 

A s  a typ ica l  e x q l e ,  we a l s o  determined the  velocity f i e l d s  f o r  t he  case 

The agreement i s  satisfactory.  

i n  which%,, = 2.5 x l@. 

The resu l tan t  diagrams Will be compared with those given by Guienne (Ref.3); 
see t h e  Diagrams V I  i n  Section 40.7. 
l oc i ty  f i e l d  and becomes excellent f o r  t h e  development of t he  boundary layer 
thicknesses i n  the  t r ans i t i on .  

The agreement i s  sa t i s f ac to ry  f o r  t h e  ve- 

0.5 0.8 1 1.5 2 2.5 3 4 5 6 10 20 
5.7 5.9 6 6.176 6.30 6.40 6.47= 6.60 6.7 6.78 7 7.3 

1.886 1.331 1.1 
. -- ._ - 

5.63 5.06 4.40 4 3.75 3.50 3.42 3 2.62 
- 



(cont td) 

1 

11 Transition C; . 103.. . .I 0.94 2.5 4.1 3.6 3.35 3.2 3.1 2.88 2.7r2.64 2.36 -2.10 

- 

L C  . 10-8.. . .......... I 1.5 2 2.5 3 4 5 G 10 20 
Transition C]  . l o 3 . .  .. O.GG71.55 3.35 3.20 3.10 2.88 2.75 2.G.L 2.3G 2.10 
Transition C/ . 103.. ... 
1 0 g c ~ . 1 0 3 . , , . .  ...... 0.126 0.117 0.212 0.294 0.334 0.374 0.39 0.39' 0.398 0.37 1 1  

I1 
4 C  I1 
SC 

I 1.336 1.31 1.627 1.966 2.1662.366 2.4G 2.50 2.496 2.35 1 1  
- 

Whence: cj (ti(,) = 1.62' - lea, L r ( t c  = 14.4 * io3, - -  = 1.84. 

Transition ( b y  i nk -  
gration) C i a  108.. ... 

101.. , . * * . , . . log CI 

._  Ll 0 

U' - uo ............ 0 

il 

. .  .... - - -_ .~ - 

0.326 0.366 0.42O 0.481 0.533 0.G37 0.74 0.796 0.M6 1 

0.58 0.65 0.74 0.801 0.85 0.92' 0.97 0.986 0.99l 1 1 ;  

1.8g6 1.79 2-14 2.71 2.89 2.976 2,986 2.996 2.96 2.91 2.77 2.50 
0.275 0.252 0.33% 0.43% 0.46l 0.478 0.47' 0.476 0.47p 0.4V 0.44% 0.3g8 

z c  
Whence: C, (&) = 2.14 - l e a ,  = 9.5 103, -- &, - - 1.73. 

~. 

10-0. .  ........... 
Transition Cf . 103.. .. 
Transition CI . 103.. ... 
iogcI. 103 ........... 

. __  - 

1.5 2 2.5 3 4 5 G 10 20 
0.5501.05 2.20 3.10 2.53 2.75 2.64 2.36 2.1 
1.10 1.02 1.146 1.396 1.79 1.99 2.lY 2.276 2.25 
0.O.L2 0.01 0.06 0.144 0 . W  0.30 0.32' 0.3G 0.356 - " 

5 c  - -  - h e n c e :  C/ (dc) = 1.396. 10-3, LRk = 18.5 103, *, - 1.936. 

40.4 Calculation of t h e  Transit ion f o r  Bc = 2.5 x 10" - 

VI): 

-~ - - -  

Development of t h e  velocity f i e l d  (see Diagrams 

A value of = 1.88 i s  read from Diagram 11. 

Laminar Fi  e l  d 



(cont'd) 

I 

2.77 3- 3.53 3.97 4.39 5.21 6.11 6.55 7- 8.25 

2.36 2.65 3.1.2 3.50 3.87 4.60 5.11 5.78 6.15 7.27 

2- 2.24 2.64 2.96 3.28 3.89 4.56 4.90 5.20 6.15 

tRc = 2.25 I O @ .  
UO U- 10-3 ....... 
UO U- 10-3.. ..... 

V 

t q c  = 1.75 108. 

V 

tRc = 1.25 100 
u, uo 103 ....... 

j 

-__ - 

!! .............. 
U T  

UO u - - *  10-3.. .... 
............ 

V 
- 

5 DL4 
" Tur bu l en t I' f i el d = 1.88, til, = 2.5. 106. 

- - - - - - 

0.75 0.836 1 

0.973 0.99' 1 

0 0.167 0.25 0.333 0.50 0.667 

N 0,451 0,6ja 0,736 0,804 0,901 0,95 

12.3 13.7 16.36 0 2,74 4,lO 5,28 8,20 10.9 
-_ _ _  - - - 

Hence, for :  

UO U--. 1 0 - 3 . . . , . .  0 
V 

1 1  the  values  of: 

~- 

tRc 3 2.25 loa p = 0.84. /j-- 

1 2 3  4 6  8 10 12 14 16 

0.31 0.19 0.06 -0.04' -0.12 -0.10' -0.06 -0.03 -0.007 0 
. . .  _ ~ _  .. . .  

.................. 0.26 0.158 0.05 -0.037 -0.10 -0.09 -0.05 -0.026 -0.006 0 

( 1  tcc = 1.75 loa p = 0.456. 

................. 0.14 0.080 0.027 -0.02 -0.Oj6 -0.04' -0.02' -O.Ola -0.003 0 



B 
I 

lo?+@ 

3 

2 

I 

2 

0 1 2 o i ( X c ) . l L i 6  

1 - Asymptotic “turbulent* f r i c t i o n  
2 - Laminar f r i c t i o n  

3, 4, 5 - T r a n s i t i o n s  f o r a = =  1 X lo4, 
2 x 106, 3 x 106 

1 - F r i c t i o n  c o e f f i c i e n t  a t  x = xc 
2 - Ratio  o f  “turbulent’to laminar 

boundary l a y e r  th icknesses  a t  x = 

The above diagrams r e su l t  from the  f igures  given i n  the  preceding tables. 

1 

0.8 

c, 0.6 
2 
2 
9 0.4 
c 

0.2 

0 
5.0 ZO 8.0 l o g o t ,  

1 -  
2 -  

2 a  - 
3, I ,  .-r ’- 

e@@ - 
00.0 - 
A A A -  

Laminar f r i c t i o n  
Asymptotic “ t u r b u l e n t “ f r i c t i o n ,  and ’a of exper 
Asymptotic tur bul en!’ f r  :c;~go:, 2p Ipfo;f.e;r;t i;;l 
Transi t ions;  f o r a ,  - 
Experimental p o i n t s  by Wieselsberger 
Experimental p o i n t s  by Gebers 
Experimental p o i n t s  by Kempf. 

.imental o r i g i n  
o r i g i n  Z E  0 

( i n t e g r a t i o n  of C*,) 

Note: The experiments by Gebers contained a laminar zone and 
thus a t r ans i t i on  (Ref.2, p.151). 

(Diagrams IV); Coefficient of Total  Fr ic t ion Fig.31 
(Comparison with Ekperiment) . 



y m/m 

6 

5 

4 

3 

2 

1 

c 
-5  0 5 10 15 AU m/sec 

Y q m  

6 

5 

1 

3 

i 

1 

0 10 20 30 
U, and U, mhec 

Determination o f  the  c o e f f i c i e n t s  f m ( x , )  i n  the  funct ional  equation ( s e e  S e c t .  3 9 ) :  

For U. 9 35 m/ eec; [A U (AI)]- - [UT (0) - UL ( u ) ] ~  - 6 a e-'*/l+"*y Im (xc) 

f._. 

6 C  

.%I 2.12 : a/, - - 4.1. a/* I) 2.15,a/3 = 
6e 

1.78 : a/, I -12.1,a/2= 10.4, a/,= -1.60' furnishing  t h e  p o i n t s  0 o f  t h e  diagram [au(v ) l  
7.3 furnishing  t h e  p o i n t s  A o f  t h e  diagram [A U ( y ) l  - - 

(1, - 2 9 0.5, m - 1; tl - 5 - 0.55, m - 0,OO' -3 L 0.00. m - 0.81*) 
re re 

Fig.32 (Diagrams V) . 



Development o f  t h e  v e l o c i t y  f i e l d  i n  the  t r a n s i t i o n ,  Case& =2.8*10 
Segments o f  c a l c u l a t i o n  i n  (4 .IO-*- 1.25-1.75-2.25-2.50 

Calculated i s o - v e l o c i t y  curves; 61e - 25-10' 

Fig.33 (Diagrams VI); Comparison wi th  Fiqeriments by Guienne. 



4.1. e i f i s i a l  R e m a r d  S h i f t  of t h e  Transition 

It has been shown previously (Sect.29) that, i n  the  presence of an  external 
perturbation of pulsat ion avo, t h e  laminar state i s  unable t o  p e r s i s t  beyond 
t h e  c r i t i c a l  segment x,, such t h a t  

I n  f ac t ,  s t a r t i n g  from this point, t h e  pressure gradients no longer are small 

rapidly). The hypotheses of invariance of pressure, which form the  basis of t he  
Blasius theory and which, from this theory, have taken t h e  laminar f i e l d  i n t o  
consideration, stop being applicable. The laminar state necessarily i s  replaced 
by t h e  other solution of t h e  Navier-Stokes equations known as "stationary turbu- 
lent!* solution which does not involve any hypothesis of invariance of pressure. 

(since they cease tending t o  zero with increasing y and actual ly  diverge /vc5 

However, t he  divergence of t he  pressure gradients with y i s  due t o  t h e  

a - a i G y  
presence of t h e  exponential e 

eay existing i n  t h e  function cp(y) which enters t h e  stream function $(x, y, t )  of 
perturbation $ = cp(y)f(x, t) + g(x, t ) .  

Finally, t h e  boundary conditions at the  w a l l  u'(0) = 0, v'(0) = 0, imposed 

which, i n  turn, i s  due t o  t h e  exponential 

on t h e  i n t e r n a l  perturbation of t h e  laminar layer formed i n  response t o  t h e  
external perturbation, are responsible f o r  the  exponential i n  question. 

Let us r e c a l l t h e  most general form of the  velocity components of t h e  in- 
t e r n a l  perturbation (see Sect .28) : 

ht us assume that t h e  w a l l ,  which i s  no longer fixed, i s  induced t o  move 
with a harmonic deformation motion such tha t  

y = yo COS a (z - U, f ) .  

dY The normal velocity component = +yo Uoa s i n  a (x  - l&t) must coincide 

with t h e  new perturbation boundary condition, meaning t h a t  t h e  f o l l d n g  must be 
posed, a t  y = 0 which i s  the  mean f igu re  of t he  undulating w a l l  with a pulsat ion 
CYU, : 

v' (0) = yo U, a sin u (z - U, 1). 

It i s  no longer necessary t o  s t i p u l a t e  ~ ' ( 0 )  = 0 since u'(0) a l so  becomes a 
harmonic function of a(x - U o t ) ,  meaning that, instead of wri t ing cpl = 'pz as 



done above, we can now write cpl = 0, cp2 # 0. We will set 'p2 = 1 (since cp alwa s 
forms a product n i t h  f ,  nothing i s  changed i n  the  generali ty of the  discussiong. 
Hence, 

u' (y) = - e-au f' - g'=, u' (y) = a e m u  f ,  

i.e., the conditions determini 
previously (see Sects.28 and 29 7 : f and g are ident ica l  with those investigated 

e--cLu - 1 
u' (Y) = - (fo + BO) F 6 - i  a sin a (Z - Uo i), 

( bm$2y, cos (a U, t)+ const ,  u' Q = -a e-au -- 

(a-a 

1 
Thus, i n  the  expressions given i n  Section 29, the  exponential e /uc6 
vanishes; simultaneously, the  causes of divergence a l so  vanish so tha t  the  
laminar state w i l l  disappear. 

41.1 Wall Structure S a t i s f y i w  the  Preceding Conditions 

Cam one more precisely define how t o  cause the  occurrence of a characteris- 
t i c  harmonic motion of the wall? 

Let us assume tha t  such a w a l l  i s  formed by a membrane stretched over an 
e l a s t i c  medium at constant pressure po 
which, i n  turn, i s  rest ing on the  
fixed w a l l  i t s e l f .  
the  mass of the  membrane. Then, at 
each instant ,  equilibrium exis t s  be- 
tween the  forces applied t o  the mem- 
brane f romthe  outside and i ts  e l a s t i c  
reaction (Fig .34). 

let us neglect c +  L---- + r  
p' PO - r  

Fig 034 In  a zone with a curvature radius 
R, l e t  us consider a segment Rd0. The 
normal e l a s t i c  component Will be Td0. 

The normal component due t o  the exter ior  and in t e r io r  pressures w i l l  be Ap M0, 
with 

1 - = = - yo a* cos a (Z - Uo 1). 

The condition Td0 = ApRd0 leads t o  

A p = - go T COS 0: (Z - Uo f). 

If the  modulus of e l a s t i c i t y  of the membrane i s  low, then T 
a tension tha t  i s  constant with respect t o  the  deformation. 

T, where i s  
t 

On the  other hand, 
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Then, 

when considering tha t  t he  term in- develops very slowly" r e l a t ive  t o  the  

term i n  ax. 
U O  

Thus, t he  re la t ions  t o  be sa t i s f i ed  are  as follows: 

- - u !  
yo - u, u 

and 

- ~ U r o e o s a ~ a ; - u o l ) . u o ~ ( l , L ( i  a 4%; = - yo To aa cos a (.; - Uo 1) 
1 

u' 
= - - 0  To a COS U. (a; - Uo 1). UO 

- 

* I n  fac t ,  operating from a value xo taken as the  or ig in  of x, selected such 
that s i n  a ( x  - U o t )  = s i n  a(Ax - U o t )  and integrat ing by p a r t s  twice i n  succes- 
sion, we obtain 

The last term can be neglected f o r  t h e  two first terms s ince & 
small with respect t o  s. 

i s  very 
uo xo 

In  the  two first terms, we ident i fy  
UO 



... .. . .  . ... . .  
I 

which fixes the tension t o  be given t o  the  membrane so tha t  an external perturba- 
t i o n  of pulsat ion CUU, wil l  not cause t r ans i t i on  t o  t h e  turbulent state. 
obvious tha t ,  i n  t h e  solut ion obtained i n  this manner, t h e  la t te r  must be linked 
t o  the  external perturbation and t o  the  abscissa x. 

X t  is  

These observations can be compared With recent ly  reported findings on the  
properties of t he  skin of cer ta in  cetaceans (dolphins, porpoises, etc.). 
not en t i re ly  out of the  question t h a t  sk in  muscles exist which adjust  t he  ten- 
s ion of the  skin t o  the  frequency of perturbations of t h e  ambient medium ( a t  
veloci t ies  of 20 - 30 m/sec, these frequencies a t t a i n  kilocycles).  

It i s  

It i s  a l so  conceivable t o  provide the  w a l l s  of Wings and fuselages with /lk8 
a skin of such type. 

The analysis performed here does not reveal  that the  diss ipat ive qual i t ies  
Ap- of the  substance forming the  skin (permeable o r  not) play any ro l e  a t  a l l .  

parently, only the  e l a s t i c  character is t ics  are of significance". 

Experiments would have t o  be made t o  verify o r  nu l l i fy  these provisional 
conclusions. 

+:- We attempted t o  f ind  some indications along this l i n e  by using a diss ipat ive 
permeable skin, but were  unsuccessfd.  
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CHAPTER V I 1  

42. General Scheine 

magnitude, established i n  Par t  I (Sect.1). 
t he  viscosi ty  coefficient p, t h e  heat transfer coef f ic ien t  k, and t h e  Kelvin 
temperature T w i l l  be t h e  variables used. 
these four new variables must then be introduced i n t o  t h e  problem. 
these w i l l  be: 

Let us r e tu rn  t o  t h e  o r ig ina l  schemes and t o  t h e  hypotheses on t h e  order of 
However, here t h e  spec i f ic  mass p ,  

Four new re l a t ions  corresponding t o  
Classically, 

1) The equation of state of a per fec t  gas: 

P = R T  
P 

gCp (with the  subscript 0 re fer r ing  t o  t h e  reference Po - - Y - 1  
X T -  Y 

where R = 

state); y i s  t h e  polytropic constant of t he  gas and gCp i t s  spec i f ic  heat a t  
constant pressure re la ted  t o  unit  mass, with t h e  heat being expressed i n  
mechanical work units. 

2) An experimental r e l a t i o n  concerning t h e  development of viscosity with 
temperature : 

P = Po (6)" (O E 0.8 for a i r ) .  

3) The energy r e l a t i o n  ( R e f  4.) whose complete expression reads: 

Let us r e c a l l  t h a t  k 

Here, Q must be expressed 

i s  such that 

i n  mechanical units. 

4) Finally, since P i s  t h e  Prandtl nmber such t h a t  

P irgcp (0.7 for air) k 
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t h e  fourth r e l a t i o n  reads 

Here, y, gCp, P, u are t h e  absolute gas constants. 

equation) w i l l  be wr i t t en  here as follows: 
The previously used r e l a t ions  (equation of cor---nuity and Navier-Stokes 

e quation of continuity : 

Navier-Stokes equation [ i n  two-dimensional regime; see Schlichting 
(Ref .4, p 31) 1 : 

A s  i n  t h e  incompressible case, t h e  velocity scheme w i l l  be formed by (see  
Fig.1): 

1) a constant gradient, from the  w a l l  t o  t h e  boundary U, of t h e  sub- 

2) a p r inc ipa l  tangent ia l  component l i nea r  i n  y: 
layer e ;  

-- 
U U = ~ , + - ~ g  ( w i t h  u=U,-UJ  

i n  t h e  ac tua l  boundary layer  5. 
small normal component V such tha t  

T h i s  component i s  attached t o  a /153 

(P U>'Z t (P V ' U  = 0; 

3 )  a complementary tangent ia l  component u which i s  small c q a r e d  t o  U 
[ t o  which a very small v corresponds, with (pu); + (pv): = 01. 
duction of this modification w i l l  permit sa t i s fy ing  t h e  Navier- 
Stokes equations. 

Intrc- 

W e  w i l l  a l s o  consider 5 as principal,  a l l  derivatives with respect t o  x as 
CL small and of t h e  second order, and - as very small so that t h e  terms i n  

P uox 
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P X  UO PX UO 
v - - can be neglected w h i l e  those i n  - - are retained. 

43. Derivation of Equation2 

After this, we will re turn t o  the  course followed i n  Part  I (see Sects.2 
and 3) .  

43 01 h r e s s i w  Condition-of Continuity 

T h i s  condition is  wr i t ten  as 

(P U)'z + (p \.?'* = 0 

o r  

with 

whence 

Solution of this equation of t he  first order i n  V(y) w i l l  imed ia t e ly  furnish 

t o  within a constant. 
boundary of the  sublayer. 

T h i s  constant i s  the  minimal normal component of the  

Ul 
[For this we actual ly  have 0 < Y < e and, with U = E y, 

v cy, -- -; [UL! p Y dY + u, c' .O p'zY dY], 

s o  that 

w i l l  be extremely small since &' , p i  are of t he  second order of smallness and 
s ince E i s  very weak. Thus, V(e') 0.1 

Consequently, V ( y )  W i l l  be of t he  same order of magnitude as the  deriva- 
t i v e s  with respect t o  x, i.e., of the  second order. 
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43.2 Navier-Ejtokes Equatig-s and FJig&nation of Pressure 

Consequently, we put 
B 

Utot = U f U With U = U, + -E y ( thus,  U*ye = 0). 

Vtot = v + u. 

- 
By hypothesis, U,, 5 ,  U = U, - 4 are  pr inc ipa l  terms, whereas u is  small and 
of t h e  first order while V, v are small and at most of t he  second order l i k e  a l l  
derivatives with respect t o  x. Finally, p i s  also small so tha t  the quantit ies 
i n  pU m u s t  be retained w h i l e  those i n  pu of an order of smallness higher than 
the  second order must be neglected. 

I n  the  s ta t ionary regime, t he  Navier-Stokes equations (see Sect .42) reduce 
t o  

LP + p [U (V,L + u',)] 0. a u  

( In  fac t ,  t h e  terms containing the  products of u and p formed 4 t h  the  
derivatives with respect t o  x can be neglected. T h i s  is t rue  also f o r  the terms 

To complete the  condition of continuity, we have 

where (pv)' = p,!v + pvy' i s  of the  second order and where (pu); = p,'u + p g  
p 4  is  a l so  of the second order (with pLu being of t he  th i rd  order). 

Let us eliminate p between the two equations by deriving the first with 
respect t o  y, t he  second with respect t o  x, and then subtracting term by term. 

Hence, /155 
[P  1 u (U', + ut*) + (V + u) U', I I', - [p 1 (U + u) (V'= + U'J 1 

(since here U:Z = 0 ) .  
P a r t  I, is  wri t ten as follows: 

This relation, equivalent t o  the  Votationll r e l a t ion  of 



The term { {  I]  i s  of t he  fourth order of smallness and thus can be 

Since p <  r: (pu):,.pu: 

neglected. 

+ (pv): = 0, the  follomng successively remains: 
(pu): - UP: and since (pU): + ( P V ) ~  = 0, (pu): + 

U', I(p u)'z-u P'z + (P 4 2  + (P v)', + i P  4 ' Y l  
+ u [(P U)", - (P)z U)', + (P u)"x, - P (V"z. + U " 4 l  = U', Pa,' 

and 

I n  addition, we can write 

a a 
ax [the terms i n  p:v, - (piv), ax (p:V> can be neglected]. T h i s  y ie lds  

I V  
(P W # Y  - ( P U ) " = Z +  (pU)"z,-(pV)'za= u *  p a p +  U', ~ ' x  + (p'zU)'y. 

Let us form 

Hence, 

leaving f ina l ly  f o r  the  equation of lbotationsll 
- 

It i s  a l so  possible t o  consider a generalized stream function 

4 (., !I) = 0 (Y, 4 ' f (4, 



such t h a t  

vu = (p u), +', = - (p u). 

Thus, f o r  the  equation of def in i t ion  of t he  function $, we W i l l  obtain 

The parallelism of this equation with i t s  homolog obtained i n  Part  I 
(Sect.3) for t he  incompressible case i s  obvious. ( A t  t ha t  time, we had Vf2 = 

The terms on the  left-hand side, with variable p , are those tha t  had been 
derived with constant p . 

The terms on the  right-hand s ide are new; the  variations of p enter here 
in to  the  analysis of t he  ac tua l  boundary layer.  

43.3 Equation of Energy 

The conditions of def in i t ion  of p, k are those given above, namely 

k=-- P GJ 
P 

It w i l l  a l so  be noted tha t  t h e  absolute value of t he  pressure p i s  ex- 
pressed by a large number (lo4 x 1.033 under the  so-called llnormal~l conditions, 
i n  MKS uni t s )  which w i l l  always be the  case except a.t very low pressures. How- 
ever, f o r  these the  medium can no longer be considered as continuous so tha t  t he  
Navier-Stokes equations of continuity are no longer applicable; t h e  present 
analysis cannot be extended t o  this case. 

Let us re turn  t o  t h e  Navier-Stokes ecplations (Sect.43.2) f o r  expressing /157 
t he  pressure gradients :. 

-a a 
ax a !I _-  -.- p [u ( U t ,  + ut$ + (V + 0) V'ul + - (i' ut,>. 

The expression i n  brackets i s  of the  second order of smallness. 

conventions adopted, t he  term - (pU4) i s  of a less small order so tha t  

With the  
a 
a Y  

157 



. 11.1 . ... .. ... . ... . ...... . ... 

Here, ay aP = -pU(V; + v . )  i s  of t he  second order. 

- l), we Y Hence, for t h e  equation of state = IZT (where R = gC, 
P obtain by derivation 

s ince  p i s  numerically very large.  

1 a T  Thus, -T - Will be of t he  second order of smallness, ju s t  as t h e  ax 
other derivatives with respect t o  x: 

. - - - , ---. - N --. - p 1 ST 1 b p  1 S p  
T 3 y - p  3y p 3 y =  P JY. in principal  

Finally, this leads t o  

i.e., 

p T E c o n s t  

which i s  a r e l a t i o n  resu l t ing  from the  s t ipu la ted  hypotheses. 

The above-given equation of energy (Sect.42), i n  its complete form, w i l l  
reduce - as is  easy t o  demonstrate - t o  t h e  terms of t h e  right-hand s ide  fomning 
p r inc ipa l  terms 

[ a l l  terms on the  left-hand side, those i n  (V + v) A, - a 'k z), and a l l  

terms i n  1-1 except those wri t ten above will vanish as of t h e  second order a t  
least]. T h i s  r e l a t ion  shows t ha t ,  i n  principal, T i s  a function of U(x, y)  and 

a~ ax ax 

of y: 

T T (U, y)* 

P 
Substituting 1-1 by 1.1 = - k, we obtain 
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Here , 

whence 

Tkiis leaves, f o r  the  equation of energy, 

u)] = 0. 

The second expression i n  brackets has the  f olloWing solution: 

p U  3u--gC, 
2T -- 

o r  
P ua f c, (constant  with respec t  t o  U). T=--- 

- 2!7c, 

1 . a k -  w . a T  
k aY - T -  aY , In t h e  first bracket, i n  View of the  f a c t  t h a t  - - - 

t h e  following remains: 

which is a l so  wr i t ten  as 

Let us here put m - 1 = u) o r  m = u) + 1. T h i s  yields 

[T(Y+V]'~Z = 0, 
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where B, and & are constants with respect t o  y (and U). 

Thus, t he  general expression of T i s  

It should be noted here tha t  a l l  reasonings and a l l  approximations made 
with respect t o  the  equation of energy apply j u s t  as w e l l  t o  t he  sublayeT, when 

se t t ing  U = - Y f o r  0 < Y < c , as t o  the  ac tua l  boundary layer, with Ul 
€ 

T I  

Since we retained the.terms i n  U", i n  a l l  of t he  expansions, they are 
Y 

applicable a l so  t o  the  zone of contact between t h e  two Layers (a t  t he  i n t e r i o r  
of each of these, U;, = 0). 

The obtained solut ion T(U, y), which i s  an approximate solution, i s  valid 
f o r  the  en t i r e  turbulent boundary layer. 

Two par t icu lar  cases can be spec i f ica l ly  investigated : 

First case : 

Adiabatic w a l l  (3) = 0. 
W 

(Here, w i s  the  subscript referr ing t o  the  state a t  t he  w a l l  where U = 0, Y = 
= y = 0).  

Outside the  boundary layer, we have 

T (G + E )  = To imposed 

with 

Hence, 

B, = 0, 
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From this it follows that 

so  t h a t  

Here, t he  rrrecovery factor!! assumes the  value P, withx- 

P Tw = To + 2-ic; Vi. 

.Second case: 

The w a l l  is  a t  an imposed temperature T, since b i s  a l s o  imposed. Then, 

1 - 
Tw = Ea'+"' 1. e. , B, = Tw(l+a), 

1 

U: $- [B, (e + 6) + Tw(l+~)]iT;. P To=-- 
2 gc, 

Hence, 

and 

The heat exchange between the  w a l l  and t h e  f l u i d  i s  then characterized by 

dL.ds-k(by dQ - where k = k  
W 

W e  obtain 

3s Two d i f f e ren t  assumptions can be made with respect t o  this re su l t :  
The presented method is  only approximate. 
contains the  terms of t h e  second order, neglected i n  t h e  equation of 
energy, would permit greater  accuracy. 
The method does not incorporate t h e  e f f ec t s  of t h e  nonstationary per- 
turbat ion components of which we know t h a t  they are always present i n  
t h e  turbulent state. 

A second approximation which 
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43.4 Inves t imt ion  of t he  V@ociLy a e g  

No matter what case i s  considered, this study indicates t ha t  the  tempera- 
t u r e  f i e l d  i n  t h e  turbulent layer, i n  first approximation, i s  connected with the  
following quantities: 

(e + s) ,  t o t a l  thickness of t he  boundary layer;  

U = E Y i n  t h e  sublayer, and U = U, + 

layer;  
spec i f ic  mass p, such t h a t  p T  

y i n  the  ac tua l  boundary Ul 
T- 

w T 
poTo .  Similarly, p = po CT) . 

- 
When studying the  problem i n  y where U,, U = TJ, - TI,, 5 (and e )  are /161 

assumed as known%, the  t e r m  T(Y) W i l l  a lso  be known from the  ins tan t  at  which 
both boundary conditions are fixed. 

Then, p ( Y )  and p = po (7) W i l l  be known. This makes it possible, at  T W  

l e a s t  numerically, t o  calculate ~ ( y )  (see i t s  expression i n  Sect .43.1). 

I n  t h e  equation i n  Q (Sect.43.2), a l l  terms other than those i n  JI can be 

(u::y(2) ) is 
calculated. If , specifically,  the development p (y)  and 

5 y  
expressed i n  the  form of algebraic expansions i n  powers of y such t h a t  p = p1 + 
+ p2y + p3 f  ... (where the  pn a re  a function only of x), then the solution will 
be of t he  same type as those given i n  Part  I (Sects .3.1, 3.2, e t c  .) . T h i s  solu-  
t i o n  W i l l  furnish a decomposition p a r a l l e l  t o  t h a t  already obtained i n  t h e  in- 
compressible regime (terms i n  s i n  c,y and i n  powers of y;  see Sect 4.1). 

A s  before, it then becomes possible t o  use t h e  equation previously derived 
f o r  t he  base of t he  ac tua l  boundary layer, together with the  complementary terms, 
f o r  studying the  problem i n  x. 

- 
When making Ui,, U: tend t o  zero, it should be possible t o  obtain the  

a s y q t o t i c  solution and t o  wri te  t he  equation i n  c(x) homologous t o  eq.( Ib) i n  
Sections 17 and 2.8. 
logous t o  eq.(IIIb) &n Sections 11.1 and 11.2, a r e l a t ion  f o r  defining the  
asymptotic f r i c t i o n  C: Will be obtained. 
solutions can be anticipated. 

Similarly, by means of t he  equation of momentum loss homo- 

Here, t h e  form of the  corresponding 

O u r  purpose i n  this Chapter was  merely t o  demonstrate t ha t ,  with the  a id  of 

3+ Since E , no doubt, i s  s t i l l  extremely small no great e r ror  w i l l  be committed 
i n  neglecting it. 
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t h e  basic schemes and the  approximations used f o r  t he  incompressible regime, the  
compressible problem can be attacked i n  a simple and detai led manner, even i n  
the  presence of heat exchange. 

T h i s  f i n a l l y  relates t o  the  following facts :  
poss ib i l i t y  t o  write the  equation i n  as a complementary generalized 
stream function (with respect t o  the  complementary component u) i n  a 
form very similar t o  that given f o r  the  incampressible regime, yielding 
a solut ion of an analogous form if T(y) and, consequently, a l so  p(y), 
p(y) can be suitably expressed; 
poss ib i l i t y  t o  find, independently of the solut ion of t he  equation i n  4, 
the  l a w  of evolution T(y) and, by the  approxi-mate re la t ion  obtained from 
t h e  adopted approximations p T  
s i t i ons  resul t ing from a study of t he  equation of energy. 

zonst, t o  define p(y), with both propo- 



CONCLUSIONS /162 

The theory presented here leads t o  a set  of conclusions whose major port ion 
merely r e f l e c t s  already known experimental phenomena. 

In terms of these conclusions, t he  mechanism of flow i n  the  boundary layer 

1) A t  very low Reynolds numbers, t h e  laminar l o c a l  f r i c t i o n  coefficient i s  

on a plane p l a t e  would be characterized by t h e  following properties: 

l a rger  than that corresponding t o  t h e  I%urbulentt1 flow s o  t h a t  t he  laminar state 
i s  a t  m a l  entropy. Thus, this i s  the  state t h a t  becomes established here; 
it i s  rotational,  i s  a t  constant pressure, and has weak t r a j ec to ry  curvatures. 

If t he  ex ter ior  flow i s  perfect ly  calm and t h e  w a l l  i s  perfect ly  smooth, 
t h e  laminar s t a t e  w i l l  p e r s i s t  up t o  the  l a rges t  Reynolds numbers. 

s en t i a l ly  i n  VI)'' of t h e  same frequency as the  excitation, a process t h a t  con- 
t inues up t o  a ce r t a in  c r i t i c a l  Reynolds number linked t o  the exc i ta t ion  wave- 
length : 

2) The external perturbations induce a react ion i n  the  boundary layer (es- 

From t he  segment 

), a 
u., 

= 0.0034 A" a 
v 

1 U* 2 LR, = 0.0017 A' 7'. 

X 2 defined i n  this manner up t o  t he  segment x, (& = 

aer ies  of secondary nonstationary responses ( i n  uh ) of 

2 

increasing frequency and nonzero t i m e  averages a r e  generated'-such t h a t  t he  sum 
of these averages, at each l e v e l  yi of t he  segment x,, makes up the  difference 
existing between the  Itstationary turbulent11 and laminar f i e l d s  U(y), with t h e  
Ifstationary turbulent11 f i e l d  being a solution of t h e  Navier-Stokes equations a t  
nonconst an t  pres  sure . 

3 
The domain of t h e  segments x such t h a t  

2 
t i o n  along which nonstationary perturbations ufI 
t o  the  external  excitation; these perturbations are maintained as such beyond 3, , 
with a well-defined frequency and elongation spectrum, t o  form a so-called 
flturbulentll s t a t e  exactly because of t he  presence of these nonstationary com- 
ponents t h a t  become permanently established. 

< 33 < !Ac i s  t h a t  of t he  t rans i -  

develop as a secondary response 

(The frequencies a t t a i n  kilocycles o r  even t ens  of kilocycles.) The /163 
s i tua t ion  thus i s  as follows: 

The segment x, i s  the  last segment i n  which the  laminar s t a t e  can p e r s i s t  

x- Here, v' i s  t h e  normal nonstationary perturbation velocity component w h i l e  u' 
i s  the  tangent ia l  component. 

I 
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since, i n  t h e  presence of an external perturbation, pressure gradients 
w i l l  develop there  t h a t  are not compatible with t h e  invariance of pres- 
sure charac te r i s t ic  f o r  t h e  laminar state. 
The secondary perturbations ( i n  ufr ) cannot propagate against t he  stream 
i n  t h e  harmonic state (poss ib i l i t y  of unpredicted flow separation) and 

cannot be generated upstream of 2 i f  t h e  c r i t i c a l  segment correspond- 

ing t o  t h e  preceding statement i s  x,. 
2 

3) F r m  t h e  theory it is  found that t h e  mean turbulent field, a t  the  same 
value of W, i s  characterized with respect t o  t h e  laminar f ie ld  by considerable 
increases i n  the  boundary layer thickness and i n  t h e  f r i c t i o n  coefficient.  

T h i s  i s  correlated with t h e  configuration of t he  f i e l d  U(y) such that, very 
close t o  t h e  w a l l ,  a sublayer with a strong gradient Ui appears, superposed by a 
layer  i n  which t h e  evolution of U i s  much slower than i n  the  laminar layer (which 
i s  slower t h e  grea te r  t h e  thickness of t he  layer).  
t he  strongest ro ta t ions  and t h e  fundamental viscosi ty  e f f ec t s  a re  located. 
thickness of the  layer i s  a f e w  ten ths  of a millimeter. 
a l i n e  where the  velocity (U,) assumes a well-defined value (about 0.45 &). 

It i s  i n  this sublayer t h a t  
The 

The layer i s  bounded by 

The approximate theory ind ica tes  t h a t  t h e  ac tua l  boundary layer  has a f inite 
thickness; however, t h e  hypotheses of t h e  theory permit no formal conclusions 
i n  this respect. 

4) The turbulent states are such tha t ,  i r respect ive of t he  value of W o ,  
condensation of t he  curves of t he  coefficient of f r i c t i o n  in to  a s ingle  curve 

(slowly decreasing; i n  the  main l i k e  q) takes place f o r  3 > 3, , defining an  

asymptotic state of t h e  boundary layer spectrum. 

f o r  a low value of t h e  Reynolds number W o  (usually, very small with respect 
The curve C;-(W) i n t e r s e c t s  t h a t  of t h e  laminar ( loca l )  f r i c t i o n  coefficient 

1 
2 

t o  - 8"). 
Thus, s t a r t i ng  from%,, t h e  turbulent state i s  that of maximal entropy. 

Nevertheless, i f  t h e  turbulent state or ig ina tes  i n  W, , it w i l l  not continue up 
I 

t o  Fb but only t o  W , ,  s ince  the  secondary perturbations i n t e r i o r  t o  uiI ca- 

I not exist upstream of - 3,. 
2 

5) The theory permits a de ta i led  calculat ion of t h e  velocity f i e l d s  of a 
turbulent boundary layer on a plane p la te ,  from t h e i r  evolution i n  the  t rans i -  
t ion ,  from t h e  local izat ion of this t r ans i t i on ,  and from t h e  development of t h e  
l o c a l  and t o t a l  f r i c t i o n  coefficients.  

A comparison of t h e  results of these calculations with p r a c t i c a l  experi- 
ments shows agreemerrt with the  experimental resu l t s ,  almost as sa t i s fac tory  as 
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that obtained - i n  the  laminar regime - from the  Blasius theory. 

6) There e s s t s  a poss ib i l i t y  of maintaining the  la-dnar state i f  the  
w a l l ,  instead of being r igid,  i s  constituted of an e l a s t i c  membrane stretched 
over a constant-pressure layer, with the tension linked t o  the pulsation of t he  
external  perturbation which, i n  the usual case, induces passage t o  the turbulent 
s t a t e .  

1x4. 

7) It i s  possible t o  proceed from here t o  a study of the  compressible case 
wi th  heat exchange, using the  same basic schemes and the  same approxjma%ions, 
as wel l  as t o  attack the  problem by means of a solution p a r a l l e l  t o  t h a t  used 
f o r  the  incompressible case. 
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APPENDIX I 

EXPANSION OF THE BLASIUS LAW I N  THREF;TERM " E N T I A L S  

Let f{('Il) be t h e  Blasius function such t h a t  f4 = 1 - cP('Il). 

For 1 = y 6 = 0, it i s  necessary t h a t  cP = 1'3: = $6 i s  given. 

Let us put  
d 

Q, (?) = a1 e - < ( i - e h  + a, e- -a; (~+e)~  + a, e-'" 

Then, 

which yields 
- - 
ai E (a, - a,) - ai = O',,, 

i .e., 

Then, 

Cons e que nt l y  , 
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Since 
1 Ofo 

a I + a a + a a = l ,  ax-a  a - -  - 2 (; + 1)s 

it follows that 

not retaining the  term which can be neglected i n  8 ' .  Then F. = const i f  

% + 1 = 0, i .e., i f  .li = 4; and al = a2. T h i s  leaves 
cy. 
I 

s o  tha t  we have 

Blasius f ie ld  a t  UhX = 0: 

0 = c-O.3'51 t73.5 - 72.5 COS11 0.0376 * q], ( C  = 0.1). 

0 1 2 3 4 5 
_. 

1 0.645 0.375 0.172 0.050 - 0  
1 - 0  0 0.355 0.625 0.828 0.950 f f 1  
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APPENDIX I1 /169 
CASE OF NONZERO VELDCITY GRADIENT U;, OF THE EXTERIOR FLDW 

The velocity spectrum of a laminar layer of a plane p la te ,  inclined with 
respect t o  t h e  stream f o r  which U& # 0, i s  t h a t  given by Blasius and modified 
by Polhausen: 

where n = and where f{ i s  the  B l a s i u s  function 1 = y vx and .where, s 
f ina l ly ,  A = 7 6 2  UAX 

The change i n  t h e  configuration of t h e  f i e ld  - u(y) is  shown i n  Diagram V I 1  

It i s  also possible t o  use an image function of t he  same form as tha t  
UO 

(Fig.35). 

given above, a t  l e a s t  f o r  Suff ic ient ly  small - ’’’ , t he  only case which will be 
investigated here : U O  

The coef f ic ien ts  a,, cyI naturally Will undergo modifications. 
w i l l  become 

The function U l  

Returning t o  t h e  statements i n  Chapter I, it i s  easy t o  demonstrate t h a t  
t he  Navier-Stokes equations f o r  defining t h e  stream function JI of the  cample- 
mentary ve loc i t ies  u, v contains U i  only a t  t h e  second infinitesimal order i f  
UAx i s  small, as we are assuming here. 
problem i n  Y, except t h e  numerical values of t h e  coef f ic ien ts  T 
determined by t he  Polhausen field.  

Thus, nothing i s  changed i n  solving t h e  
which a re  here 

n3 

T h i s  f i e l d  i s  distinguished from the  Blasius f i e l d  by using the  n o t a t i o n q  
which will be substi tuted f o r  Ei relative t o  the  Blasius f ie ld .  
t h e  very configuration of these f i e lds ,  we have 

According t o  

E 

II 
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In t h e  presence of an external  perturbation of pulsation avo, the  boundary 
condition of the  laminar domain Will be m 

3: UO 

o? 
instead of the  r e l a t ive  x, = - -, V f o r  t h e  same loca l  value U, at condi- 

t i ons  corresponding t o  UAX = 0.  

It can be proved d i r ec t ly  t h a t  

G* > XC if  Ub, > 0, x,? < i f  U', < 0. 

0 0.2 0.4 0.6 0.8 ' u/u, 

"OX 

UO 

UO 

2) Polhausen field - > 0.  

UZx 3) Polhausen field - < 0.  
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A-F'PENDIX I11 

PERTURBATION INTERIOR TO THE EOUNDAFLY LWER; 
SECOND APPADXIMATION 

Let us re turn  t o  the  equation of space r e l a t ive  t o  a funct-on fi : 

We again operate step by step, assuming t h a t  a t  a point x = x, t he  solution 

f(x,), f,'(xg) i s  known and then calculating, f o r  x = x, + Ax (A being small), 

the  new values of f (x ) ,  f,'(x). 
XO 

Then eq.( l )  i s  wr i t ten  as follows: 

The first approximation furnished the  solut ion corresponding t o  

namely, since f, i s  imaginary here", 

The solution of eq.(la) will produce a modification 6f(x)  of this first 
approximation. 
ing condition f o r  S f i  i s  obtained: 

We w i l l  seek the  value by l inear izat ion,  from which the  follow- 

Since /172 

A real  f, l p ' l ,  increasing indefini te ly ,  could refer t o  the  case of flow sepa- 
ration. T h l s  is not what we propose here. 
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t h e  solution Sf,l has t h e  form 

The expansion of Sf,' m u s t  be continued t o  terms i n  Ax of a power higher 
than uni ty  since, because of t h e  f a c t  t h a t  t h e  first approximation here satis- 

fies f:"3 + f,' (k2 - CY: -) = 0, t h e  term f,' w i l l  contain Ax as f ac to r  since 

fi - fi = 0 W i l l  vanish ( t o  satisfy t h e  boundary conditions). 

i n  Sf;, w i l l  contain A$ as factor. 

ut3 

The term on t h e  ri  ht-hand s ide  i n  brackets, with respect t o  the  equation 

The expression i n  brackets corresponding t o  the  solut ion with zero right- 
hand s ide  i d e n t i f i e s  this solut ion with that of t h e  f irst  approximation and thus 
can be incorporated i n t o  it (Sf ,  = S f 2  = 0). 

For determining t h e  coef f ic ien ts  by c y  e, t he  c l a s s i c a l  procedure of identi-  
fying a l l  terms of l i k e  power i n  Ax i s  followed i n  t h e  general equation (2) which 
now i s  wri t ten i n  t h e  form 

whence 
constant term: 

= 0; 

term i n  Ax: 



Hence, 

It can be ver i f ied that t h e  re la ted  fac ts ,  concerning the  propagations and 
Emitat ions s t ipulated by the  first approximation of f(x, t),  are encountered 
again i n  the  second approximation. 

Let  us re turn  first t o  the  t i m e  condition: 

k' U'1 + u, /ti) + /mzq + u, f"z4 =.v [P j + 2 ka i"z* + 1l"'Z~]I 

i.e., 

3 [r.& + k l f ]  + U, [ f m z s  + kl j'J - v  [k4 f + 2 ka j"t~ + j""4 = 0. a 1  

Here, 

with 

Since Ax i s  small, we can write f i n  t h e  following form: 

by put t ing 

2 a: Uo Y - g o  -p .- ro' 



L e t  us enter f ,  made expl ic i t  i n  this manner, i n t o  the  equation of time. 

For the  term having e(B+y)  Ax as factor,  we then obtain 
/174 

rll : (P + YY + k2 :. 
+ ~ ~ I ~ O ( ? + Y ) ~ ( B + Y ) ~ + ~ ~ I - V ~ ~ + ~ ~ ~  (P+.y)'+(B+y)4~]=O, 

whence 

where fi, i s  a constant. 

Similarly, 

k / 'al - Y k4 la = 0 y i el ds la,  PI;'^ con s t . 
F'rom this follow the  general expressions of f :  

which cause the  following ve loc i t ies  of propagation t o  appear: 

The exponential terms reduce t o  constants f o r  fi , i f  $ + y 0 and f o r  fa ,  
i f  $ y 2 0. These are wr i t ten  as 

i .e., 

k2 
Qa 

For a given -, f o r  example equal t o  2, we obtain 
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i.e., 

Since 

5 4  2 3  X S  x 1 1  (z. - 1.5 -, + 0.75 - - 0.126 g) - 5 = 0. 
Z e  x: 

t h e  term i s  extremely small. The expression i n  parentheses 
px", * R e  

x -  1 
x, 2 has - - - as  root .  

being harmonic i n  the  d i r ec t  v i c in i ty  of 2, as had been observed for t h e  

f irst  approximation i n  the  same case k2 = p, and t h a t  it m u s t  vanish i n  this 

inmediate Vicinity as w e l l  as upstream of 

It i s  easy t o  demonstrate that t h e  perturbation ceases 
X 

2 

( 2 ) 
So far as the  function g is concerned, t h e  space r e l a t ion  is  wri t ten as 

follows : 

Introducing, as done before f o r  f ,  i n to  the  solut ion g(x, t) of first ap- 
proximation, a solut ion g + Sg of second approximation and l inear iz ing with re- 
spect t o  6g, we Obtain 

where 

Let us repeat t h e  reasoning used previously, by put t ing 

6 g'* = b' + 2 c ' A x + 3 e A x 2 .  

The condition i n  6g:, Sg:I; leads t o  
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-(a: %) (b' '+ 2 C' A Z) + 3 e A 2' = '0. 

By ident i f ica t ion  t o  powers of Ax, we obtain 

or 

The complete solution i n  g: becomes 

and 
.- .- 
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where gl, g2, g, a r e  functions of q, to, and A t .  Then, h and p, are wri t ten as m 

2 1 

The time equation i n  g reads 

- 3 g"+* + u, gmz*-- v g'"'z4 = 0. 
3 1  

For the term i n  e (a+p)Ax,  this yields  

!7'llO + + u, 91 (A + p ) Z  - v g, (A + p4) = 0, 

namely 

Similarly, 

The boundary conditions with respect t o  y are always u'(0) = 0 ( i n  general) 

and v'(0) = 0, with the  first being d i rec t ly  sa t i s f i ed  by putting cp1 = cpz = -. 
Let  us also set 

1 
2 
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Each of t h e  expressions i n  brackets must be canceled, which necessitates /178 
two conditions t o  be wri t ten i n  each xo f o r  which, i n  principle,  'four constants 
fl, 9 fz, 9 €3, 9 g2, are available. 

However, it is  necessary here t o  allow f o r  t h e  f a c t  that B i s  imaginary. 
For i3 = :E, a cancellation of t h e  expressions i n  brackets y ie lds  

- 
!.? 3 : 
s fl : 

P (/la- /ao) 0 and A ( g l e e  ga ) + y (/I. + /io) + p (01. + OJ = 0; - 
9 (2 y (/le - /4)] = 0 

It follows tha t  fl, = f zo ,  so t h a t  only two conditions remain t h a t  deter- 
mine gl, and gz0 as a function of xo and flo which remains always available':' f o r  
sa t i s fy ing  a complementary condition. 

t he  condition at t h e  w a l l  v(0'j = 0, i t s  fu r the r  calculation i s  unnecessary here. 

For x, corresponding t o  usual values of Reynolds numbers of t he  end of 
t r a n s i t i o n  (% > 0.5 X lo", for example), k W i l l  be large and W i l l  be expressed 
i n  lo3. 

Since t h e  only r o l e  asst ned t o  t h e  function g(x> i s  t o  permit sa t i s fy ing  

The second appro-tion modification 

w i l l  then be small with respect t o  t h e  corresponding function of first approxi- 
mation: 

35 Here, fl, and fz, Will be complex q a n t i t i e s  i n  general, except i f  t h e  arbi- 
t r a r y  or ig in  of time had been so selected as t o  keep these quantit ies real, as 
we already demonstrated above. 
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UCY 
vx ' since, i f  E represents t h e  value of x canceling k2 - @ - we obtain 

Except i n  t h e  domain x -. H, this simultaneously justifies the  expansions 
of second approximation carr ied out above as w e l l  as the  poss ib i l i t y  of l imit ing 
t h e  calculations t o  those of the  first approximation. 

For x close t o  x, it i s  necessary t o  re turn  t o  t h e  fundamental equation 

+ yz (kP - a; 2) = 0, 

/179 

which reduces t o  

Its solut ion reads 

f"z3 E 0. 

(where the  propagation starts i n  such a manner that, i n  x = Ti, we have f = 0, 
f,' = 0). T h i s  eliminates the  s ingular i ty  about E. 
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APPENDIX m /180 
VEmCITY DISTRIBUTION I N  THE BOUNDARY SuSLAyER IN 

INCOMPRESSIBLF; REED5 

The boundary conditions, characterizing the  boundary sublayer g - as w i l l  
be recalled - are as follows: 

a t  the  w a l l  yw = 0, 
uw=o, v w = o ;  

a t  t h e  interface with the  ac tua l  boundary layer,  y = E, 

u = U, where U, -* X E 0.45 U, 

constant for t h e  asymptotic state; 
loca l  (asymptotic) f r i c t i o n  coefficient,  being 

This coeff ic ient  must correspond t o  that calculated by the  equation of lo s s  
of momentum : 

Let  us re turn  t o  the  Navier-Stokes equations 

and t o  the  continuity condition 

Hence, 

dy ( s i n c e  Vw = 0). 
/181 

It follows from this that 
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i s  of t h e  second order of smallness and E is  very small. where - 
have V ( E )  

With 

Thus, we au 
ax 

0 and V(y)  0 f o r  0 e y < E .  

which i t se l f  i s  very small, t h e  Navier-Stokes equations i n  t h e  
VOX 

sublayer c reduce t o  

* a P  -. -- 
p a y = O '  

Since the  gradient p: i s  zero i n  t h e  sublayer, t h e  gradient p,' will depend only 
on t h a t  existing along t h e  in te r face  U, with t h e  ac tua l  boundary layer, f o r  
which 

v E 0, u = (U, + I l )p*o .  

Hence, 

a u1 
ax I n  t h e  symptotic state, U, + X is  constant and - = 0. 

With our conventions, v ( - 2 ) i s  of an order higher than 2 and thus 
Y--ro 

can be neglected. Consequently, ("P) E 0. 
\ ax / y < e  

This places us i n t o  the  frame of t h e  Prandtl-Blasius approximations and 
hypotheses f o r  which t h e  conditions originating from Navier-Stokes are wri t ten 
as follows: 

The sublayer is  laminar ( i n  the  incompressible regime). 

Let us put, as is conventional, 
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Hence, 

U=UO/)xr  v = -  ' 6% [? I'? -il, 2 2  

/182 

The Navier-Stokes condition becomes 

q j'? i n n 2  + 2 j iN1a = 0. 

Since Yff, "= f ,  t he  Blasius equation of t he  second order i s  obtained: 

i i'?' + 2 j m q 3  g 0. 

It i s  known that t h e  calculat ion procedure for f(0) consists i n  putting 

and then i n  calculating C,'2, ff3 so  as t o  write the  Blasius re la t ion  i n  t h e  form 
of a po~namia l .  t o  powers of 7 .  
obtain 

Each of t he  fac tors  must be zero so that we 

A, = A, = 0, 

A,+O,  A , = - -  2 ,  A, = 2.5 A: , . ., 
A, = A, = 0, A, = A, = 0, A, = A,, = 0, , . . 

A: 

whence 
- 

Let us subs t i tu te  these expressions i n t o  t h e  conditions given at the  begi- 
ning o f  this Appendix, concerning the  charac te r i s t ics  of the  sublayer, namely: 

condition of t he  veloci ty  gradient a t  t he  w a l l :  

i.e., 
- A I- - -  

A, = 4% 0.375 \/A = 0.375 E 0.061 vx; 



i.e., /183 

'0375 $iii 73 i s  extremely small 48 It i s  easy t o  demonstrate that t h e  term 

with respect t o  unity, no matter what t he  value of 3 > lo3 might be. 

Hence, 

and 

i.e., 

Thus U(Y) i s  quasi-linear i n  Y i n  t h e  sublayer which, i n  the incompressible 
regime, i s  laminar (Q.E.D.). 

A t  t h e  in t e r f ace  with t h e  ac tua l  boundary layer  a discontinuity of t he  ve- 
l oc i ty  gradient would then exist. However, this r e s u l t s  from the  approximations 
made, spec i f ica l ly  from the study of t h e  ac tua l  boundary layer where the  viscous 

terms v - have been neglected ( i n  the  problem i n  y), which i s  valid f o r  Y > 

> c but i s  not s t r i c t l y  valid f o r  Y e .  Thus, this discontinuity r e su l t s  from 
a l o c a l  f a i l u r e  of t h e  calculation but does not imply any contradiction (with 
respect t o  this subject, see Chapt.11, Sect.8). 

a2 u 
a Y 2  
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